You are here: Home / Research Projects / Project Details

Project Details

Improved Aquaculture Decision-Making Using the Shellfisheries Mapping Atlas and FARM Model

Project Status: This project began in June 2012 and was completed in May 2013

We are integrating two tools commonly used to plan for and site aquaculture: the Farm Aquaculture Resource Management (FARM) Model and the Shellfisheries Mapping Atlas. For the first time, we’ll have a single tool that considers human uses, wild species, and habitat. This new tool will help identify the places where aquaculture is compatible with other human uses and where adverse effects on wild species and habitat are minimized.

Why We Care
Shellfish aquaculture has the potential to create jobs and stimulate the economy while protecting the environment and improving water quality. A single adult oyster can clean 60 gallons of water a day. The United States imports about 85% of its seafood, and expanding our aquaculture industry could provide domestic seafood products in high demand. However, planning sites for aquaculture facilities in our multi-use coastal waters is difficult and involves complex decision processes.

What We’re Doing
We are integrating the FARM Model with the Shellfisheries Mapping Atlas to plan and site aquaculture.

The Shellfisheries Mapping Atlas is an interactive, online GIS-based decision-making tool for marine aquaculture that provides maps on general site characteristics (e.g. bathymetry, currents, etc.) that aid in the selection of areas suitable for aquaculture. It is also capable of assessing potential use conflicts (e.g. commercial fishing, recreational angling, etc.) and environmental interactions (e.g. presence of submerged aquatic vegetation, threatened or endangered species, contaminated water and sediment, etc.). The Shellfisheries Mapping Atlas has proven to be a valuable tool for Connecticut resource managers.

The FARM Model combines information about water and sediment quality and about shellfish feeding rates and growth to evaluate the suitability of a site for aquaculture (i.e. whether shellfish can flourish) and the impact of the farm on water quality (i.e. changes in chlorophyll and dissolved oxygen related to aquaculture activity). It also provides an economic analysis of potential production and, based on water-quality parameters that are measured, assesses potential credits for carbon and nitrogen trading. The FARM Model will be used to evaluate the suitability of three geographically distinct waterbodies/sites within waterbodies (locations in Stonington, Milford, and Norwalk, Connecticut) to support aquaculture, specifically the estimation of shellfish carrying capacity. Results will be integrated as a map layer into the Shellfisheries Mapping Atlas.

This project will improve the ability of resource managers, aquaculture farmers, individuals, and organizations involved in stock enhancement or habitat restoration projects to successfully plan activities within multi-use estuaries. It can also foster the expansion of US aquaculture while minimizing adverse environmental and social impacts.

What’s Next
From this pilot study, we hope to develop and apply this approach to other estuaries where shellfish aquaculture is occurring. We hope to expand the application to include dynamic use of the FARM Model that would access real-time data rather than the static application developed here.

Related Region of Study: Connecticut

Primary Contact: Suzanne Bricker

Research Area: Science for Coastal Ecosystem Management 

Related NCCOS Center: CCMA

* Printed on January 31, 2015 at 11:04 PM from