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ABOUT THIS DOCUMENT 

This report describes the development and assessment of four spatially explicit predictive models describing 
mesophotic coral presence in the Au‘au Channel Region in the Main Hawaiian Islands (MHI). This effort was con
ducted by NOAA’s National Centers for Coastal Ocean Science (NCCOS) Biogeography Branch in partnership 
with NOAA’s Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) and the NOAA Pacific 
Islands Fisheries Science Center (PIFSC). The surfaces resulting from this effort represent the first spatial pre
dictions of mesophotic coral presence inside the Sanctuary. This report consists of five primary components: 1) 
an introduction to the HIHWNMS and its interest in mesophotic corals; 2) a description of the methods used to 
generate and validate the predictive mesophotic coral models; 3) a synopsis of the performance, accuracy and 
environmental relationships highlighted by these models; 4) a discussion of these environmental relationships 
and patterns, as well as a description of how these models can be applied for management decisions; and 5) a 
few concluding remarks about the study and about future research needs. These predictive surfaces will be used 
by the HIHWNMS and other local partners for planning research and monitoring activities, and will support the 
ecosystem based management and conservation of the HIHWHNMS. 

For more information on this effort please visit: http://ccma.nos.noaa.gov/ecosystems/sanctuaries/hwnms/ 

Direct questions or comments to: 

Bryan M. Costa 
Geospatial Scientist 
CSS, Inc. contractor to NOAA/NOS/NCCOS/CCMA/Biogeography Branch 
1305 East West Highway 
SSMC4, N/SCI-1, 9th floor, #9232 
Silver Spring, MD 20910 
Phone: (301) 713-3028 x146 
Email: Bryan.Costa@noaa.gov 
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EXECUTIVE SUMMARY 

The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel 
in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light 
conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribu
tion, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the 
availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been 
the subject of scientific study because they are being threatened by a growing number of anthropogenic stress
ors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National 
Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific 
Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem 
components. The present study helps to address this need by examining the distribution of mesophotic corals in 
the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and 
includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but 
also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal 
place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal 
currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely 
protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions 
create patches of comparatively warm, calm, clear waters that remain relatively stable through time. 

Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of 
predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites 
genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can 
find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to 
produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 
georeferenced records containing information about mesophotic coral occurrence and 34 environmental predic
tors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance 
from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were random
ly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic 
(ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set 

Image 1. A brightly colored school of reef fish inhabits a reef of Leptoseris corals at a depth of approximately 75 m in the Au‘au Channel. Photo 
Credit: HURL. 
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Figure 0.1. Diagram showing the steps needed to develop and validate four ensemble models predicting the habitat suitability of all 
mesophotic hard corals, Montipora, Porites and Leptoseris. 

aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these 
models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum 
number of correctly predicted presence and absence records intersected on each ROC curve. Permutation im
portance and jackknife analysis were used to quantify the contribution of each environmental variable to the four 
ensemble models. 

The average test AUCs for the all hard coral, Montipora, Porites and Leptoseris models were between 0.90 and 
0.97, indicating ‘excellent’ overall model performance. Habitat suitability thresholds were set to 25%, 15%, 7% and 
20% (i.e., the logistic output value x 100%) for the all hard coral, Montipora, Porites and Leptoseris models, respec
tively.  These numbers denote how suitable a location is for mesophotic corals. Predictive accuracies (measured at 
these suitability thresholds) were 73.1% overall for all hard corals, and using absences only, were 86.1% for Mon-
tipora, 85.3% for Porites and 78.2% for Leptoseris. Permutation importance and jackknife analysis revealed that 
several environmental variables were important to all four of the ensemble models. These variables included depth, 
distance from shore, mean euphotic depth, and variance of euphotic depth. Unlike the other models, seafloor com
plexity (i.e., slope of slope) was also important to the development of the Leptoseris ensemble model. While it is 
likely that these variables are proxies for other variables, suitable environmental conditions for mesophotic corals 
were highest in a broad region in the south and eastern half of the Au‘au Channel. For all hard corals and Monti-
pora, predicted suitable conditions were the highest between Lahaina Roads Basin and Papawai Point. This area 
is characterized by relatively warmer (at the surface), moderately deep and less turbid waters than elsewhere in the 
study area, suggesting that these two groups prefer moderately deep waters that remain optically clear and stable 
through time. For Porites, suitable conditions were highest between Hanakaoo Point and Hekili Point. This area is 
characterized by relatively warmer, slightly shallower and less turbid waters than found in other parts of the study 
area, suggesting Porites prefers shallower waters and can tolerate slightly more turbid waters than either Montipora 



 
 
 

 
 
 
 

  
 
 
 

 

  
 

   
 
 
 
 

or all hard corals combined. Lastly for Leptoseris, suitable environmental conditions were highest offshore of Hekili 
Point, which has the deepest and most consistently warm and clear waters compared to any other part of the study 
area. These trends suggest that Leptoseris prefers slightly deeper, substantially less turbid and less variable waters 
(in terms of turbidity) than Montipora, Porites and all hard corals combined. 

Results from this study can be used for a number of management applications, including identifying large areas 
of high suitability by coral genus; delineating subzones within the sanctuary if special regulations are needed to 
protect MCEs; and targeting and promoting research and educational activities about these important and rare 
habitats. These predictive maps may also be overlaid with additional spatial information (e.g., human activities) 
to evaluate options for minimizing conflicts in areas with many overlapping resources and uses. However before 
each application, extreme care should be taken when selecting a habitat suitability threshold because it affects the 
probability of correctly identifying the presence and absence of mesophotic corals. In some cases, it may be more 
important to correctly identify locations of mesophotic coral presence (e.g., research), while in others, it may be 
more important to correctly identify absences (e.g., undersea cable routing). 

While these models help to fill some knowledge gaps about the distribution of MCEs in the Au‘au Channel Region, 
several data and informational gaps still exist and need to be addressed in the future. These gaps are not unique 
to the Au‘au Channel, as similar gaps exist across the MHI as a whole. To fill some of these gaps, future efforts 
should focus on developing a systematic sampling plan for mesophotic corals around each of the MHI. Systematic 
sampling would allow this or similar approaches to be applied to other areas in the MHI, supporting the marine 
spatial planning needs of the broader ocean community. Establishing a baseline for MCE distributions in the MHI is 
also critical because it will allow scientists and resource managers to better understand how MCEs are responding 
to local environmental variations and global climate changes in the future. 
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CHAPTER 1: INTRODUCTION

1.1. WHAT ARE MESOPHOTIC CORALS?
Researchers have classifi ed coral reef 
ecosystems into three general depth 
zones based on species composition 
and environmental conditions: 1) shallow 
(~0-30 m deep), sunlight-dependent cor-
als with symbiotic algae (zooxanthellae), 
2) mesophotic (~30-150 m) corals still
dependent on sunlight but adapted to low 
light conditions, and 3) deep coral eco-
systems (deeper than 150 m) comprised 
of species lacking zooxanthellae (Hin-
derstein et al. 2010, Roberts et al. 2009). 
Mesophotic corals can show a range 
of adaptations which allow them to live 
in low light environments including fl at-
tened morphologies, pigment specializa-
tion, increased heterotrophy, and lower 
metabolic demands (Kahng et al. 2010). 
In the Hawaiian archipelago, Kahng and 
Kelley (2007) and Rooney et al. (2010) 
found that different types of mesophotic 
coral ecosystems (MCE) dominated spe-
cifi c depth ranges. In 30 to 50 m of water, 
upper MCEs were dominated by a low di-
versity of hard corals found in shallower 
reefs (Pocillopora meandrina, Pocillopora damicornis, Montipora capitata, and Porites lobata). In 50 to 80 m of 
water, branching/plate coral MCEs were dominated by hard corals with a singular morphology. At 80 to 130 m 
depths, MCEs were dominated by the coral species, Leptoseris hawaiiensis. 

Several physical factors are assumed to infl uence the distribution of these MCEs, including aragonite satura-
tion, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of photosyntheti-
cally active radiation (PAR) at depth (Grigg 1965, Fricke et al. 1987, Ohlhorst and Liddell 1988, Falkowski et al. 
1990, Kahng and Kelley 2007, Kahng et al. 2010, Rooney et al. 2010). Additional research is needed to better 
understand these mesophotic communities (Kahng and Maragos 2006), as they are increasingly threatened by 
numerous anthropogenic stressors (Wilkinson 1999, Klyepas and Eakin 2007). Around Hawai‘i and elsewhere 
that reefs occur, the vast majority of coral reef studies have been conducted on shallow reef systems due to ac-
cessibility with standard scuba gear (Menza et al. 2008). Unlike most regions, there have also been a number 
of studies on the deeper reefs in Hawai‘i due to the jewelry industry based on black corals (Grigg 1965, 2001, 
Kahng and Grigg 2005). Mesophotic coral ecosystems have increasingly been the subject of scientifi c study and 
are the focus of this spatial modeling effort and assessment to support the Hawaiian Islands Humpback Whale 
National Marine Sanctuary (HIHWNMS).

1.2. WHY IS HIHWNMS INTERESTED IN MESOPHOTIC CORALS?
The Hawaiian Islands Humpback Whale National Marine Sanctuary was cre-
ated in 1992 to protect the North Pacifi c Humpback Whale (Megaptera novae-
angliae) and their calving and breeding habitat (Oceans Act 1992, NMSP 2002, 
Calambokidis et al. 2008). The sanctuary is spread across several of the Hawai-
ian Islands (Figure 1.1) and encompasses many of the insular shelf areas where 
humpback whales are most frequently sighted (Oceans Act 1992, Craig et al. 
2003). While focused on protecting a single whale species, the multipart sanc-
tuary also encompasses many areas important to a wide range of other fauna 
including seabirds, turtles, other marine mammals, and coral reef ecosystems. 

Figure 1.1. The “Au‘au Channel Region,” which includes the Au‘au Channel as
well as parts of the Kealaikahiki, Alalākeiki, Pailolo and Kalohi Channels. MaxEnt 
models of mesophotic coral habitat suitability were developed for the study area 
outlined by the dotted black line.
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At the time of initial designation and again during the 2002 management plan review process, it was recom
mended that the sanctuary explore expansion of its scope to include the conservation and management of other 
components of the ecosystem (Oceans Act 1992, NMSP 2002, HIHWNMS and DAR 2007). The present study 
addresses this need by examining the distribution of mesophotic corals in the Au‘au Channel, an unmapped 
habitat type in a central region of the sanctuary. 

The Au‘au Channel is located in the Hawaiian Islands between the islands of Maui, Lanai, Molokai and Ka
hoolawe. The study region also includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels between these 
islands but we will refer to the study area as the “Au‘au Channel region” for brevity (Figure 1.1). The channel 
reaches depths of 140 m, however the majority of the seafloor is in the mesophotic depth range between 40 and 
90 m deep. Topography on the channel fl oor consists of numerous drowned solution basins and ridges, sediment 
plains, and conical reef pinnacles (Grigg et al. 2002). These were exposed during periods of low sea level during 
multiple glacial periods over at least the last 800,000 years (Lambeck et al. 2002). Reef growth in the Channel 
during the Holocene consists of a thin veneer a few meters thick on those topographic highs (Grigg et al. 2002). 

The Au‘au Channel is a priority region for the HIHWNMS and other researchers for variety of reasons. In addition 
to being a focus of humpback whale activity in the winter months (Craig et al. 2003), it is also the historical center 
of the black coral jewelry industry in Hawai‘i (Grigg 1965, 1993). This has led to extensive interest in seafloor 
surveys of coral beds by divers for jewelry production and even harvesting with ROVs and submersibles. More 
recently, research on the unique geology and reef communities of this region has increased due to the broad 
area of potentially suitable mesophotic habitat and the recent discovery of some areas with extensive coral cov
erage and Halimeda beds at mesophotic depths (Grigg et al. 2002, Kahng and Grigg 2005, Kahng and Kelley 
2007, Rooney et al. 2010). 

Objectives of this study were to: 1) identify a relatively simple, low-cost and robust modeling approach to predict 
mesophotic coral distribution based on available data, 2) create a spatially explicit predictive model for meso
photic coral occurrence in the Au‘au channel and surrounding region of the HIHWNMS, and 3) train the sanctu
ary staff in use of the approach to enable similar studies in other areas as additional data become available. 
Other reef types and bottom features, including azooxanthellate and shallow reef assemblages, were beyond 
the scope of this project. 
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CHAPTER 2: METHODS 

2.1. STUDY AREA 
The environmental conditions (e.g., wind, waves, rainfall) vary widely in the Au’au Channel region both in space 
and time (Figure 2.1). Weather conditions throughout the Hawaiian Islands are largely controlled by the seasonal 
wind and wave patterns as well as the high shield volcanoes on the islands (Fletcher et al. 2008). From October 
to April, southerly winds (locally referred to as “Kona” winds) occasionally create conditions that result in heavy 
rainfall events. Large, long-period swells from the north and northwest and short-period swells from the south 
associated with Kona events are dominant during this period. The northeast trade winds become more persistent 
from May to October. The short-period southern swells associated with the Kona winds are replaced with longer-
period southern swells and short-period northeasterly waves generated by the trade winds. The winter months 
bring damaging North Pacifi c swells that may limit coral growth (especially in shallow waters) on the north side 
of the islands (Grigg 1998). It can also refract around islands and combine with the trade wind waves, creating 
large, energetic waves that can greatly reduce coral growth on the eastern and western sides of the islands 
(Fletcher et al. 2008). However, much of the Au‘au Channel is protected from these trade wind waves, the North 
Pacifi c swell and their refraction around Maui. 
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a) b) 

Wind Speed 
(at 30 m Elevation) 

Mean Annual Rainfall 
 404.4 inches

10.3 inches 

12.5 m/s 

0.41 m/s 

c) 

LU/LC 
Rock 
Agriculture 
Forest 
Developed 

d)
 

Wetland 
Grassland 
Pasture 
Scrub 

Figure 2.1. Environmental conditions (e.g., wind, waves, rainfall) in the Au‘au Channel Region vary widely both in space and time: a) Pre
dominant direction and height of waves during the winter and summer months. Figure reproduced from Fletcher et al. 2008. b) Modeled 
mean wind speed at 30 m in elevation in the Au‘au Channel Region (AWS, 2004). c) Mean annual rainfall from 1978 to 2007 in the Au‘au 
Channel Region (Giambelluca et al. 2011). d) Land use/land cover for Maui, Lanai, Kahoolawe and Molokai from 2005 (NOAA CSC, 2008). 
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The trade winds deliver moist air to the northeastern sides of the islands (Fletcher et al. 2008). The high shield 
volcanoes block this moist tropical air, causing it to rise, condense and then fall as heavy rain on the windward 
sides of the MHI. On Maui in particular, the western mountains act as a shield, creating a pocket of persistently 
windless (<0.41 meters per second at 30 m in elevation) conditions southeast of the island in the Au‘au Channel. 
This relatively windless area is in stark contrast to north and south parts of the Au‘au Channel Region as a whole, 
which often see winds up to 12.5 meters per second (i.e., 45 kilometers per hour). The western Maui mountains 
also cause a rain shadow on the island, making the leeward side of Maui much drier than the windward side. 
In particular, the leeward grasslands on Maui receive on average less than 10 inches of rain annually, while the 
upland forests can receive over 400 inches. 

This precipitation gradient, along with large areas of plowed agricultural land, cause on average more sediment 
to be discharged into coastal areas in the north part of west Maui (i.e., around Kahana) than in the southern 
part (i.e., southeast of Lahaina) (Vermeij et al. 2008). Kona storms can precipitate extreme rainfall events, lead
ing to periodic mass erosion events. Much of these fi ne grained sediments persist in the water column along 
this northern stretch of coastline, as they are continually resuspended by wave and wind-generated turbulence 
(Storalazzi et al. 2006). Along the southern coastline, semi-diurnal tidal currents help to fl ush these suspended 
sediments out to sea most notably during the spring tides (i.e., new and full moons) (Storlazzi et al. 2004). Mild 
wind conditions south of western Maui mitigate the resuspension of sediments that are not fl ushed out by these 
semi-diurnal tides. Together, these strong tidal currents and slack winds create an area with consistently good 
water quality and clarity. Lower amounts of agriculture and development (compared to central Maui) also pre
serve these clear water conditions. Much of the land in the southern part of western Maui (i.e., from Lahaina to 
McGregor Point) is unsuitable for agriculture (Maui County, 2010), and currently, less than 10% of the watershed 
in these areas has been developed (Crane, 2011). However, this trend may change with the implementation of 
the Maui 2030 directed growth plan, which calls for the developed area in these watersheds to double by 2030 
(Crane, 2011). It is unclear how these proposed changes will affect sedimentation along the leeward waters of 
western Maui, although runoff mitigation and watershed restoration measures are likely to be put into place. 

2.2. MAXIMUM ENTROPY MODELING 

2.2.1. What is Maximum Entropy Modeling? 
Freely available Maximum Entropy mod
eling software (MaxEnt 3.3.3e) was used 
to create a spatially explicit predictive
surface of MCE habitat suitability in the
Au‘au Channel Region. MaxEnt (Fig
ure 2.2; Phillips et al. 2006; Phillips and 
Dudík, 2008) is a modeling technique
that predicts animal or plant distributions 
using presence-only data (i.e., data con
taining records only of locations where
the animal or plant was present). Max-
Ent makes these predictions by ana
lyzing the distribution of environmental
variables associated with the species’
presence (also known as “occurrence”)
to fi nd other areas that meet all of these 
environmental constraints (without mak
ing any assumptions about what is not
known). Statistically speaking, MaxEnt
fi nds the probability distribution of maxi
mum entropy (i.e., the distribution that is 
the most spread out) and then constrains 
it using a set of values of environmental 
variables where the species is known to 
occur. 

 
 

 

 

 
 
 

 
 

Figure 2.2. MaxEnt 3.3.3e software was used to develop predictive models of me
sophotic hard coral distributions. The main graphical user interface screen for the 
MaxEnt software is shown above. 



 

 

 

 

 

 

Like other modeling approaches, MaxEnt is not without its biases and limitations, and can be sensitive to the 
amount and accuracy of the presence-only data and the ecological relevance and scale of predictor variables 
(Elith et al. 2011). Presence-only data may be affected by a number of issues, including: (1) the probability of 
detecting a species at a specific location, (2) sample selection bias and uneven sampling effort, where some ar
eas are more intensively sampled than other areas, (3) spatial autocorrelation of samples, and (4) uncertainties 
associated with the temporal and/or spatial scale of the sample data (Phillips et al. 2006; Elith et al. 2011). How
ever, almost all of these issues are problematic for presence-absence datasets and modeling techniques as well 
(Fielding and Bell 1997; Manel et al. 2001; Hirzel and Guisan 2002; Dormann et al. 2007). In particular, sample 
selection bias affects presence-absence models because it influences the spatial autocorrelation of the dataset 
and the prevalence (i.e., frequency of occurrence) of the organism. Thus, spatial autocorrelation and prevalence 
values will differ depending on how samples were collected, which is problematic because these values affect 
the significance (Fielding and Bell 1997) and magnitude (Manel et al. 2001) of model accuracy statistics, respec
tively. In addition to prevalence and autocorrelation, it has been suggested that unreliable absence records (due 
to a variety of factors, including inadequate survey effort) may give presence-only datasets an advantage over 
presence-absence datasets (Jiménez-Valverde et al. 2008; Lobo et al. 2010). 

2.2.2. Why was MaxEnt used to model mesophotic coral distributions? 
The MaxEnt approach to spatial model
ing compares favorably to other model
ing techniques including generalized lin
ear models (GLM), generalized additive
models (GAM), boosted regression trees
(BRT), genetic algorithm for rule-set pre
diction (GARP) and environmental niche
factor analysis (ENFA) (Figure 2.3; Elith et 
al. 2006; Hernandez et al. 2006; Phillips
et al. 2006; Pearson et al. 2007; Tittensor
et al. 2009; Pittman and Brown 2011). For 
this study, MaxEnt was chosen over these 
other modeling approaches for several
reasons. First, the HIHWNMS would like
to use this modeling approach to predict
the distribution of hard mesophotic corals
over a larger geographic area within the
Sanctuary, and eventually throughout the
Main Hawaiian islands. However, data de
scribing the distribution and abundance of 
mesophotic hard corals is sparse in the
MHI. If this modeling approach is to be
expanded in the future, it will require that
mesophotic coral data be compiled from
various platforms of opportunity. It is likely 
that the majority of this opportunistic data

 
 

 

 
 

 
 
 
 
 
 

 
 
 
 

 
will be presence-only (or diverse datasets that will need to be standardized to presence only), making MaxEnt a 
more broadly applicable approach and a more likely candidate for future modeling efforts. 

The second reason that MaxEnt was chosen over other approaches was because it is simpler to understand, 
more flexible and easier to apply than some of the other modeling techniques available. MaxEnt models are 
based on easily formatted, raster inputs, produced using simple menus in a graphic user interface, and yield 
results including maps and figures in preformatted, publication-quality outputs. Simplicity is important during 
model development for staff that may not have the statistical background, specialized software, or time to en
gage in more complex and time consuming approaches. Simplicity is also important when trying to deconstruct 
and understand how each environmental variable influences habitat suitability and what variables are important 
for predicting a species distribution. MaxEnt uses several different approaches to tease apart the contribution of 
each environmental variable to the overall prediction. A simpler model may also be easier to transfer and apply to 

Figure 2.3. Comparison of MaxEnt to other modeling methods. This fi gure depicts 
the mean area under the curve (AUC) versus mean correlation (COR) values for 
several species distribution modeling methods. MaxEnt outperformed many of 
these modeling methods, including generalized linear models (GLMs) and gener
alized additive models (GAMs). Figure adapted from Elith et al. 2006. 
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other areas in the MHI, although care must be taken in doing so (Elith et al. 2011). In addition to being a simpler 
approach, MaxEnt is also a fl exible approach because it can utilize both continuous and categorical predictor 
data, is fairly robust to correlated environmental predictors (Wollan et al. 2008) and can incorporate interactions 
among predictor datasets (Phillips et al. 2006). Such fl exibility is important if the ecological niche of a species is 
poorly defi ned or understood. It also reduces (but does not negate) the need to choose uncorrelated predictors 
that may be ecologically relevant to a species’ local distribution (Elith et al. 2010). 

The third reason that MaxEnt was chosen over other techniques was because it compared favorably, in terms 
of predictive performance and accuracy, to other modeling techniques (Elith et al. 2006; Hernandez et al. 2006; 
Phillips et al. 2006; Pearson et al. 2007; Tittensor et al. 2009; Pittman and Brown 2011). One measure of the 
predictive accuracy of a model is the number of independent samples correctly predicted divided by the total 
number of samples. For example, a model would have an overall accuracy of 80% if 1,200 out of 1,500 samples 
were correctly predicted. For other applications, we might be concerned not just with overall model accuracy, 
but also with model performance, which is defi ned as the ratio of true positive predictions to false positive pre-
dictions. Models that perform well have higher true positive prediction rates than false positive prediction rates. 
If a model performed no better than random chance, its true and false positive prediction rates would be equal. 
Applying these metrics of model accuracy and performance, Elith et al. 2006 found that MaxEnt was in the high-
est reforming group in terms of AUC (area under the curve), correlation and Cohen’s kappa when predicting the 
distribution of terrestrial species in several locations around the world. Given that the primary goal of this project 
is to produce the most accurate prediction of mesophotic hard coral distributions possible, the results of Elith et 
al. 2006 suggest that MaxEnt is capable of producing spatial predictions that are (at the very least) as accurate 
as some of the more complicated and labor intensive modeling techniques available. To test this trend and evalu-
ate the predictive accuracy of MaxEnt, 10 models were fi t to different, randomly selected subsets of 50% of the 
data. The fi nal reported model predictions are averages of these 10 replicates. Moreover, a randomly chosen 
30% of the mesophotic hard coral absence and presence data were set aside at the beginning and used to in-
dependently assess the accuracy of MaxEnt predictions. This accuracy assessment is discussed in more detail 
in Section 2.6.2.

2.3. RESPONSE VARIABLES (MESOPHOTIC HARD CORAL DATA)
The response variable for this project was the presence of mesophotic hard corals (Figure 2.4). Observations 
were compiled from underwater video and photos collected in the Au‘au Channel region during fourteen research 
missions from November 25, 2001 to September 26, 2011. These research missions were funded by NOAA’s Of-
fi ce of Marine Aviation Operations and NOAA’s Center for Sponsored Coastal Ocean Research (CSCOR). They 
were led by the Bishop Museum, the Hawaii Division of Aquatic Resources, PIFSC and the University of Hawaii, 
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Figure 2.4. Location of TOAD and ROV points describing the presence and absence of mesophotic hard corals in the Au‘au Channel 
Region (left). MCE dominated by colonies of Leptoseris hawaiiensis at a depth of 90 m in the Au‘au Channel (right). Photo adapted from 
Rooney et al. 2010. Photo credit: Hawai‘i Undersea Research Laboratory.



 

 

  
 

 
  

 
 

  

 
 

 

 

 

and some of the cruises were done in collaboration with the Hawaii Undersea Research Laboratory. Two pieces 
of equipment and several platforms were used to acquire this large collection of georeferenced underwater video 
and photographs. Specifically, a Towed Optical Assessment Device (TOAD) camera sled was deployed in 2008 
to 2011 aboard the NOAA ships Oscar Elton Sette and Hi‘ialakai, and a RCV-150 Remotely Operated Vehicle 
(ROV) was deployed in 2001, 2002, 2004 and 2006 to 2011 aboard HURL’s R/V Ka‘imikai-o-Kanaloa. The posi
tional uncertainty associated with the camera sled and ROV video ranges from ± 15 to 100 m. Please see PIFSC 
2008 and Rooney et al. 2010 for more information about these cruises and for more details about the TOAD 
and ROV systems. Video data from camera sled and ROV dives were compiled and classified by CRED every 
30 seconds at 5 points spaced equidistantly in a horizontal line across the monitor screen. Substrate type, living 
biological cover (including hard coral, crustose coralline algae, macroalgae and soft corals) and other benthic 
characteristics were recorded in the classification process. The quality of the video prevented classification to the 
species level in some locations. For more information about this classification scheme and method, please see 
the following websites (ftp.soest.hawaii.edu/pibhmc/website/webdocs/webtext&fi gures/bh_class_codes.htm and 
ftp.soest.hawaii.edu/pibhmc/website/webdocs/documentation/Optical-Proc-Overview.pdf). 

From these fourteen research missions, 22,843 georeferenced records were classified using CRED’s protocol 
and classification scheme (Table 2.1). These classified records were provided by CRED on February 29, 2012 
in three separate excel tables. Edits made by CRED to these classified records after this date were not included 
in this modeling effort. These excel tables were converted to shapefiles, merged together, and projected into a 
common coordinate system (i.e., NAD 83 UTM 4 N). Each record was then converted from abundance values 
to presence-absence values (i.e., 0 = absent and 1 = present). After this conversion, close to 5,550 records 
were selected and removed from further analysis because they fell outside the Au‘au Channel study area and/ 
or outside the temporal range (2004 to 2010) of some of the environmental predictors (i.e., euphotic depth and 
sea surface temperature). Seventy percent (n= 1,989) of the remaining 2,841 presence records were randomly 
chosen and used to develop a MaxEnt model predicting the distribution of all mesophotic hard corals in the Au‘au 
Channel Region. Thirty percent of the presence and absence data (n=852 and n= 4,332, respectively) were set 
aside to evaluate this models’ predictive accuracy. This same absence data was also used to analyze the com
mission errors of the genus-specific models. To develop genus-specific distribution models, points that contained 
presence information about multiple coral genera (148 in all) were split into separate records. Subsequently, an 
additional 1,514 points were removed from analysis because they were unclassified or because there were not 
enough presence records (<100) to develop a reliable spatial prediction for a specific coral genus (i.e., Pocil-
lopora and Other). This deletion left 1,327 points, which were used to develop genus-specific coral distribution 
models for Leptoseris, Montipora and Porites. 

Table 2.1. Records collected by the PIFSC CRED, HURL, the Bishop Museum, DAR and UH, and classified by the PIFSC CRED were 
used to train or validate the mesophotic hard coral predictions developed using MaxEnt. 

GROUP # OF RECORDS # OF RECORDS USED TO 
DEVELOP MODELS 

# OF RECORDS USED TO 
VALIDATE MODELS 

Hard Corals Present 2,841 (2,841*0.7) = 1,989 (2,841*0.3) - 507 = 345
 Leptoseris 617 617 -
Montipora 605 605 -
Other Corals 62 - -
Pocillopora 11 - -
Porites 105 105 -
Unclassified 1,441 - -

No Hard Corals Present 14,441 - (14,441 * 0.3) - 3,031 = 1,301 
Sub Total 17,282
 Outside study area 2,061
 Outside temporal period 3,500 

Total 22,843 1,989 1,646 
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2.4. PREDICTOR VARIABLES (ENVIRONMENTAL DATA) 
Several physical factors are thought to influence the distribution of MCEs, including water temperature, currents, 
hard substrate complexity and availability, water chemistry (i.e., aragonite saturation) and the availability of PAR at 
depth (Leclercq et al., 2000; Guinotte et al., 2006; Kahng and Kelley, 2007; Tittensor et al. 2009; Rooney et al. 2010). 
Given their potential importance, many of these physical factors were included in this mesophotic coral modeling ef
fort as predictor variables. Table 2.2 describes each of the predictor variables that were evaluated for inclusion in this 
study. Information about water chemistry, water temperature at depth and variation in cloud cover were not included 
because data for these variables were not readily available for the time period (2004 to 2010) and/or geographic 
area (Au‘au Channel Region) examined here. The 21 raw predictors that were included were compiled from a variety 
of sources, including the University of Hawaii (UH) School of Ocean and Earth Science and Technology (SOEST) 
(Carter et al. 2008; Hafner, 2005; Carter and Potemra, 2012; UH SOEST, 2012), the National Aeronautics and Space 
Administration (NASA) (NASA, 2012) and the U.S. Geological Survey (USGS) (Gardner et al. 1998). 

Additional processing steps were needed before spatial models of mesophotic corals could be developed using these 
predictor surfaces. The primary purpose of these steps was to standardize the: (1) geographic extent, (2) format, (3) 
coordinate system, and (4) in some cases, the spatial resolution of the different images. These steps improved the 
consistency of the predictors’ georeferenced location, making it less likely that the process of model development 
would be negatively impacted by spatial uncertainty associated with the predictors. The first step in this process was 
to transform each predictor to the same coordinates system (i.e., NAD83 UTM 4 North). Each predictor was clipped 
to the same geographic extent, snapped to the 10x10 m bathymetry surface, and saved to an ESRI ASCII (.asc) 
file. The ESRI ASCII format was used because it can be easily ingested by the MaxEnt software package. Using the 
environment settings, predictors were snapped to the 10x10 m bathymetry surface because this surface had the fin
est spatial resolution and presumably, the least amount of spatial uncertainty associated with it (Gardner et al. 1998). 

Eleven metrics describing the complexity (i.e., vertical structure) of the seafloor were calculated from the 10x10 m ba
thymetry surface using several tools in ArcGIS’s Benthic Terrain Modeler (Wright et al. 2005), DEM Surface Toolbox 
(Jenness, 2011) and ArcGIS’s Spatial Analyst Toolbox (Table 2.2). Spatial Analyst Toolbox was also used to calculate 
the geographic distance of each grid cell in the Au‘au Channel Region to the closest shoreline. All of these metrics 
were chosen based on previous studies that suggested they were potentially influential predictors of hard coral pres
ence (Dolan et al. 2008; Pittman et al. 2009; Woodby et al. 2009). The mean of these complexity metrics were also 
computed at two additional spatial scales (i.e., inside circles with radii of 25 and 200 m). Predictors at these different 
scales were included to explore the influence of spatial scale on MaxEnt’s predictive performance. Since the spatial 
scale of the oceanographic variables (i.e., light availability, sea surface temperature and tidal currents) did not match 
those of the complexity and geographic metrics, several more steps were required before they could be included in 
the model. 

To match the spatial resolution of the other predictor surfaces, the tidal current surfaces were resampled from 1x1 km 
to 10x10 m using cubic convolution. As cubic convolution is not an interpolation method, the purpose of this step was 
to make the spatial resolutions of tidal current surfaces and the other predictors the same. Grand mean, minimum, 
maximum and standard deviation were calculated from 2004 to 2010 annual mean euphotic depth surfaces (i.e., PAR 
availability) and sea surface temperature surfaces (SST). These grid surfaces were converted to points, and ordinary 
kriging was used to develop geostatistical predictions at 10x10 m. Table 2.3 describes the default parameters used to 
develop these predictions, and the cross validation root-mean-square errors of the kriged surfaces. Kriging was used 
(instead of resampling) to change the spatial resolutions of the SST and light availability predictors because several 
data gaps existed and needed to be filled around the islands of Maui, Lanai, Kahoolawe and Molokai. With the ad
dition of these kriged oceanographic surfaces, a total of 49 predictors were considered for inclusion in the MaxEnt 
modeling process. The correlation of these 49 predictors was explored at 30 spatially independent locations using 
Spearman’s Rank tests. These 30 points were selected by creating and analyzing ten regularly-spaced point grids 
between 500 and 5,000 m using a global Moran’s I test in ArcGIS’s SA Extension. Even though MaxEnt is fairly robust 
in dealing with correlated predictors, 15 predictors were removed from further analysis that were signifi cantly (p≤0.05) 
and highly correlated (>0.85) with other predictors to reduce the amount of computational time needed to create 
a model. Predictors calculated at coarser spatial scales (i.e., 25 x 25 and 200 x 200 m) were an exception to this 
rule, as they were often significantly and highly correlated with their finer and/or coarser scale counter parts. These 
predictors were left in the analysis to explore the influence of spatial scale on MaxEnt’s predictive performance. The 
remaining 34 predictors (Figure 2.5) were included in the spatial modeling of mesophotic hard coral presence in the 
Au‘au Channel Region. 



 

    

 

 

                                    
 

Ta
bl

e 
2.

2.
 S

ev
er

al
 p

re
di

ct
or

s 
w

er
e 

us
ed

 to
 m

od
el

 th
e 

di
st

rib
ut

io
n 

of
 m

es
op

ho
tic

 h
ar

d 
co

ra
ls

. T
he

se
 p

re
di

ct
or

s 
de

sc
rib

ed
 th

e 
se

afl
 oo

r’s
 d

ep
th

, v
er

tic
al

 s
tru

ct
ur

e,
 a

va
ila

bl
e 

lig
ht

, s
ur

fa
ce

 
te

m
pe

ra
tu

re
, c

ur
re

nt
s 

an
d 

di
st

an
ce

 fr
om

 s
ho

re
lin

e.
Pr

ed
ic

to
rs

 U
se

d 
to

D
ev

el
op

 M
od

el
s

-

A
sp

ec
t, 

B
at

hy
m

et
ry

, B
P

I, 
C

ur
va

tu
re

 (G
en

er
al

, P
la

n
&

 P
ro
fi l

e)
, R

ug
os

ity
 a

nd
S

lo
pe

 o
f S

lo
pe

 a
t 1

0x
10

,
25

x2
5,

 2
00

x2
00

 m

G
ra

nd
 m

ea
n 

&
 s

ta
nd

ar
d

de
vi

at
io

n

-

G
ra

nd
 m

ea
n 

&
 s

ta
nd

ar
d

de
vi

at
io

n

-

M
ea

n 
(3

5 
&

 8
5 

m
),

va
ria

tio
n 

(3
5 

m
)

-

10
x1

0,
 2

5x
25

, 2
00

x2
00

 m

34
 

# 
Pr

ed
ic

to
rs

-

11
 x

 3
 =

 3
3 

4 - 3 -

3 
x 

2 
= 

6

-

1 
x 

3 
= 

3

49
 

Te
m

po
ra

l
R

es
ol

ut
io

n 
D

at
a 

So
ur

ce
 

09
/0

9/
20

04
 –

07
/1

7/
20

10
 

P
IF

S
C

 C
R

E
D

,
H

U
R

L,
 B

is
ho

p
M

us
eu

m
, D

A
R

 a
nd

U
H

, 2
01

2 

N
/A

 

U
S

G
S

(G
ar

dn
er

 e
t a

l.
19

98
);

U
H

 S
O

E
S

T,
 2

01
2;

 
P

IF
S

C
 C

R
E

D
 2

00
8 

20
04

 - 
20

10
     

     
    

(G
ra

nd
 m

ea
n,

m
in

im
um

, m
ax

im
um

,
st

an
da

rd
 d

ev
ia

tio
n)

 

N
A

S
A

, 2
01

2 

11
/2

00
4 

– 
1/

20
05

 
U

H
 A

P
D

R
C

(H
af

ne
r, 

 2
00

5)
 

20
04

 - 
20

10
     

     
     

(G
ra

nd
 m

ea
n,

m
in

im
um

, s
ta

nd
ar

d
de

vi
at

io
n)

 

N
A

S
A

, 2
01

2 

U
nk

no
w

n 
N

O
A

A 
N

O
D

C
, 2

01
2 

A
nn

ua
l m

ea
n,

m
ax

im
um

, v
ar

ia
tio

n
in

 s
pe

ed
 

U
H

 A
P

D
R

C
 (C

ar
te

r 
an

d 
P

ot
em

ra
, 2

01
2;

C
ar

te
r e

t a
l. 

20
08

) 

U
nk

no
w

n 
N

O
A

A 
N

O
D

C
, 2

01
2 

U
nk

no
w

n

U
nk

no
w

n

N
/A

 
G

IS
 D

er
iv

ed

To
ta

l #
 o

f P
re

di
ct

or
s 

D
at

a 
D

es
cr

ip
tio

n 
Va

ria
bl

e 
U

ni
ts

 
D

efi
 n

iti
on

 
Sp

at
ia

l
R

es
ol

ut
io

n 

H
ar

d 
co

ra
l

pr
es

en
ce

 

12
3 

cl
as

si
fi e

d 
vi

de
o 

tra
ns

ec
ts

 (6
,0

81
 R

O
V

 +
11

,2
01

TO
A

D
 =

 1
7,

28
2 

po
in

ts
) 

N
/A

 
P

re
se

nc
e/

ab
se

nc
e 

of
 h

ar
d 

co
ra

ls
 (b

y 
ge

nu
s)

 b
et

w
ee

n 
30

an
d 

15
0 

m
 in

 d
ep

th
. S

pa
tia

l u
nc

er
ta

in
ty

 =
 ±

 1
5 

to
 1

00
 m

 

M
ea

n 
ne

ar
es

t n
ei

gh
bo

r
di

st
an

ce
 o

f p
oi

nt
s 

=1
3

m
; M

ea
n 

he
ig

ht
 a

bo
ve

se
afl

 oo
r u

nk
no

w
n  

            
            

    

Se
afl

 o
or

C
om

pl
ex

ity
 

A
sp

ec
t 

D
eg

re
es

 
C

om
pa

ss
 d

ire
ct

io
n 

of
 m

ax
im

um
 s

lo
pe

 c
al

cu
la

te
d 

us
in

g
A

rc
G

IS
’s

 A
sp

ec
t t

oo
l. 

10
x1

0,
 2

5x
25

* 
an

d
20

0x
20

0 
m

* 

D
ep

th
 

M
et

er
s 

D
ep

th
 o

f s
ea
fl o

or
. 

D
ep

th
 (M

ea
n)

 
M

et
er

s 
Av

er
ag

e 
w

at
er

 d
ep

th
 c

al
cu

la
te

d 
us

in
g 

A
rc

G
IS

’s
 F

oc
al

 
S

ta
tis

tic
 to

ol
. 

D
ep

th
 (S

td
ev

) 
M

et
er

s 
D

is
pe

rs
io

n 
of

 w
at

er
 d

ep
th

 a
ro

un
d 

th
e 

m
ea

n 
ca

lc
ul

at
ed

us
in

g 
A

rc
G

IS
’s

 F
oc

al
 S

ta
tis

tic
 to

ol
.

B
at

hy
m

et
ric

 P
os

iti
on

 In
de

x
(B

P
I) 

U
ni

tle
ss

- =
 c

on
ca

ve
+ 

= 
co

nv
ex

 

M
ea

su
re

 o
f w

he
re

 a
 re

fe
re

nc
e 

lo
ca

tio
n 

is
 (v

er
tic

al
ly

)
co

m
pa

re
d 

to
 lo

ca
tio

ns
 s

ur
ro

un
di

ng
 it

. 
B

P
I w

as
 c

al
cu


la

te
d 

us
in

g 
th

e 
B

en
th

ic
 T

er
ra

in
 M

od
el

er
 (W

rig
ht

 e
t a

l. 
20

05
) 

C
ur

va
tu

re
 (G

en
er

al
) 

1/
10

0
m

et
er

s
- =

 c
on

ca
ve

+ 
= 

co
nv

ex
 

M
ea

su
re

 o
f c

on
ve

xi
ty

/c
on

ca
vi

ty
 o

f t
he

 la
nd

sc
ap

e 
ca

lc
u

la
te

d 
us

in
g 

A
rc

G
IS

’s
 C

ur
va

tu
re

 to
ol

.

C
ur

va
tu

re
(P

la
n/

C
ro

ss
-s

ec
tio

na
l) 

C
ur

va
tu

re
 o

f t
he

 s
ur

fa
ce

 p
er

pe
nd

ic
ul

ar
 to

 th
e 

m
ax

im
um

sl
op

e 
di

re
ct

io
n 

ca
lc

ul
at

ed
 u

si
ng

 A
rc

G
IS

’s
 C

ur
va

tu
re

 to
ol

.

C
ur

va
tu

re
(P

ro
fi l

e/
Lo

ng
itu

di
na

l) 
C

ur
va

tu
re

 o
f t

he
 s

ur
fa

ce
 p

ar
al

el
l t

o 
th

e 
m

ax
im

um
 s

lo
pe

di
re

ct
io

n 
ca

lc
ul

at
ed

 u
si

ng
 A

rc
G

IS
’s

 C
ur

va
tu

re
 to

ol
.

R
ug

os
ity

 
U

ni
tle

ss
 

R
at

io
 o

f s
ur

fa
ce

 a
re

a 
to

 p
la

na
r a

re
a 

ca
lc

ul
at

ed
 u

si
ng

D
E

M
 S

ur
fa

ce
 T

oo
ls

 (J
en

ne
ss

, 2
01

1)
.

S
lo

pe
 

D
eg

re
es

 
M

ax
im

um
 ra

te
 o

f c
ha

ng
e 

in
 s

lo
pe

 c
al

cu
la

te
d 

us
in

g
A

rc
G

IS
’s

 S
lo

pe
 to

ol
. 

S
lo

pe
 o

f S
lo

pe
* 

D
eg

re
es

 o
f

D
eg

re
es

 
M

ax
im

um
 ra

te
 o

f m
ax

im
um

 s
lo

pe
 c

ha
ng

e 
ca

lc
ul

at
ed

us
in

g 
A

rc
G

IS
’s

 S
lo

pe
 to

ol
. 

Li
gh

t A
va

ila
bi

lit
y 

E
up

ho
tic

 D
ep

th
 Z

on
e 

M
et

er
s 

D
ep

th
 o

f t
he

 e
up

ho
tic

 z
on

e 
de

riv
ed

 u
si

ng
 th

e 
M

or
el

m
od

el
 (M

or
el

 e
t a

l. 
20

07
) T

he
 e

up
ho

tic
 z

on
e 

is
 d

efi
 n

ed
as

 th
e 

ar
ea

 w
he

re
 p

ho
to

sy
nt

he
tic

al
ly

 a
ct

iv
e 

ra
di

at
io

n
(P

A
R

) l
ev

el
s 

ar
e 

> 
1%

 o
f s

ur
fa

ce
 le

ve
ls

.  
PA

R
 is

  t
he

sp
ec

tra
l r

an
ge

 o
f s

un
lig

ht
 (4

00
-7

00
 n

m
) t

ha
t o

rg
an

is
m

s
ca

n 
us

e 
in

 th
e 

pr
oc

es
s 

of
 p

ho
to

sy
nt

he
si

s.
 

4x
4 

km
(K

rig
ge

d 
10

x1
0 

m
) 

Va
ria

tio
n 

in
 c

lo
ud

 c
ov

er
 

N
/A

 
P

er
si

st
en

t c
lo

ud
 c

ov
er

 in
 M

ai
n 

H
aw

ai
ia

n 
Is

la
nd

s 
bi

nn
ed

ev
er

y 
12

 h
ou

rs
. 

1x
1 

km
 

W
at

er
Te

m
pe

ra
tu

re
 

S
ea

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 
(S

S
T)

 
D

eg
re

es
C

el
si

us
 

Te
m

pe
ra

tu
re

 o
f t

he
 s

ea
 s

ur
fa

ce
 d

ur
in

g 
th

e 
da

yt
im

e 
as

 
m

ea
su

re
d 

by
 M

O
D

IS
 A

qu
a 

se
ns

or
. 

4x
4 

km
 (K

rig
ge

d 
to

10
x1

0 
m

) 

Te
m

pe
ra

tu
re

 a
t d

ep
th

 
D

eg
re

es
C

el
si

us
 

In
 s

itu
 te

m
pe

rtu
re

 o
f w

at
er

 c
ol

um
n.

 
N

/A
 

C
ur

re
nt

s 
M

od
el

ed
 ti

da
l c

ur
re

nt
ve

lo
ci

ty
 a

t d
ep

th
 

C
en

tim
et

er
s/

S
ec

on
d 

Ti
da

l c
ur

re
nt

 v
el

oc
iti

es
 (b

as
ed

 o
n 

se
as

on
al

 m
ea

n 
w

at
er

 
st

ra
tifi

 ca
tio

n)
 m

od
el

ed
 h

ou
rly

 a
nd

 a
ve

ra
ge

d 
ov

er
 o

ne
ye

ar
. 

1x
1 

km
 a

t 3
5 

&
 8

5 
m

de
pt

hs
(R

es
am

pl
ed

 to
10

x1
0 

m
)

pH
 

U
ni

tle
ss

 
Th

e 
ac

id
ity

/b
as

ic
ity

 o
f s

ea
 w

at
er

. p
H

 <
 7

 is
 a

ci
di

c 
an

d 
pH

 
va

lu
es

 >
7 

ar
e 

ba
si

c 
or

 a
lk

al
in

e.
 

N
/A

 

W
at

er
 C

he
m

is
tr

y 
A

ra
go

ni
te

 s
at

ur
at

io
n 

μm
ol

/k
g 

Th
e 

av
ai

la
bi

lit
y 

of
 a

ra
go

ni
te

 (c
al

ci
um

 c
ar

bo
na

te
) i

n 
se

a
w

at
er

. 
N

/A
 

A
lk

al
in

ity
 

μm
ol

/k
g 

Th
e 

ca
pa

ci
ty

 o
f s

ea
 w

at
er

 fo
r n

eu
tra

liz
in

g 
an

 a
ci

d
so

lu
tio

n.
 P

os
iti

ve
 v

al
ue

s 
in

di
ca

te
 s

up
er

sa
tu

ra
tio

n 
an

d
ne

ga
tiv

e 
va

lu
es

 in
di

ca
te

 u
nd

er
sa

tu
ra

tio
n.

 
N

/A
 

G
eo

gr
ap

hi
c 

D
is

ta
nc

e 
to

 S
ho

re
lin

e 
M

et
er

s 
D

is
ta

nc
e 

to
 s

ho
re

lin
e 

ca
lc

ul
at

ed
 u

si
ng

 A
rc

G
IS

 E
uc

lid
ea

n 
D

is
ta

nc
e 

to
ol

. 
10

x1
0,

 2
5x

25
* 

an
d

20
0x

20
0 

m
* 

Va
ria

bl
e 

Response Predictor (Environmental) 

C
ha

pt
er

 2
: M

et
ho

ds
 

page 
11 



Table 2.3. Parameters used to develop 10x10 m surfaces for euphotic depth and sea surface temperature using ordinary kriging. These 
parameters were incrementally changed to minimize the root mean square error of the fi nal surfaces. 

VARIABLE 
TRANS

FORMATION 
TO NORMALITY 

ORDER 
OF TREND 
REMOVAL 

SEMIVAR
IOGRAM 
MODEL 

NUGGET RANGE ANISOT
ROPY 

NEIGBOR
HOOD 

# NEIGH
BORS

INCLUDED 

ROOT
MEAN

SQUARE
ERROR 

Euphotic 
Depth 
(Mean)
 

Box-Cox (10) Constant 
(60% Local) Gaussian 0 15,306 29.8° 4 sector with 

45° offset
     Maximum= 5

Minimum= 2 1.03

Euphotic 
Depth 
(Stdev)
 



Log Constant 

(60% Local) Stable 0 23,348 85.1° 4 sector with 
45° offset

     Maximum= 5
Minimum= 2 0.53

 SST
 
(Mean) None Constant 

(60% Local) Gaussian 0.002 69,105 89.3° 8 sector      Maximum= 5
Minimum= 2 0.06

 SST 
(Stdev) Box-Cox (-1) Constant 

(60% Local) Gaussian 0 7,984 0° 4 sector with 
45° offset

     Maximum= 5
Minimum= 2 0.04
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Flat South
 

North
 Southwest 15 cm/sec 30 m Depression 
Northeast West Flat Currents at East Northwest Aspect* Depth* Ridge150 m BPI* 0 cm/sec 35 m (Mean) Southeast North 

7 cm/sec 15 cm/sec Convex Convex 

Currents at Currents at Curvature Curvature* Concave Concave 0 cm/sec 35 m (Stdev) 0 cm/sec 85 m (Mean) (Plan)* 

9.1 m Convex 110 m 14.9 km 

Curvature Distance to Euphotic Depth Euphotic Depth 1.8 m Concave 0.20 km (Profile)* Shoreline* 83 m (Grand Mean) (Grand Stdev) 

High 26.2 ° C 72 ° of ° 0.9 ° C 
Slope of SST SST 

Rugosity* Slope* (Grand Mean) (Grand Stdev) 25.4 ° C Low 0 ° of ° 0.3 ° C 

Figure 2.5. Thirty four predictor variables were included in the MaxEnt modeling process. Nine of these variables (denoted by an asterisk) 
were included at two additional spatial scales (25 x 25 and 200 x 200 m). 
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2.5. MODEL DEVELOPMENT
Four MaxEnt ensemble models (i.e., aggregate models based on several model replicates fi t to random subsam-
ples of the data) were developed for the Au‘au Channel Region. One ensemble model predicted the distribution 
of all hard mesophotic corals, and the remaining ensemble models predicted the distribution of three different 
coral genera (i.e., Leptoseris, Montipora and Porites). The same 34 predictors were included in, and the same 
input parameters were used for, all of these predictive models. The majority of the MaxEnt input parameters 
were left at their default value (Figure 2.6), since few guidelines exist for optimizing these parameters (Phillips et 
al. 2006), and even fewer exist for optimizing these parameters for modeling mesophotic corals (Tittensor et al. 
2009; Howell et al. 2011). The few model parameters that were changed include: Random seed (on), Replicated 
run = Subsample, Random test percentage = 50, Replicates = 10, Maximum iterations = 1,000 and Regulariza-
tion = 1. A randomly chosen starting point and subsample of 50% of the data were used to reduce the likelihood 
of a single point or set of points biasing the overall model results. It was also used to independently assess the 
predictive performance of these models and to calculate the importance of individual variables. The modeling 
process was replicated 10 times for each of the four predictive groups (10 x 4 = 40 models total), so that vari-
ance could be calculated for each model ensemble. Response curves, spatial predictions and jackknife analysis 
were developed for each model replicate (Appendix A (contact lead author)), and these results were averaged by 
predictive group to produce the fi nal MaxEnt performance metrics and spatial predictions for all hard mesophotic 
corals, Leptoseris, Montipora and Porites. For each model, predicted habitat suitability values ranged logistically 
from 0 (0% suitable) to 1 (100% suitable). It is important to note that these habitat suitability values are not prob-
abilities and are not necessarily expected to correlate with abundance. They only indicate the relative suitability 
of a habitat for mesophotic corals, based on the values of environmental variables at other locations where me-
sophotic corals were observed.

Figure 2.6. All of MaxEnt input parameters (except the six circled in red) were left at their default values during the modeling process.  

It is also important to point out that one input parameter, called regularization, was particularly critical for devel-
oping reasonable MaxEnt models. Regularization affects how closely the predicted distribution is fi t to the dis-
tribution of the presence records and associated environmental variables (Phillips, 2012). Larger regularization 
values (>1) fi t more general models to the training data producing more global predictions, whereas small regu-
larization values (<1) fi t the predicted model closer to the training data producing more localized predictions. If 
the regularization value is too large or small, the prediction may be too general or too localized (respectively) and 
may not match well with the test data. Given this sensitivity, the regularization value (0.0001) applied by Tittensor 
et al. 2009 was used as a starting point. Three more regularization values above 0.0001 were tested (i.e., 0.01, 
0.1 and 1) to determine the optimal value for this study. Highly variable response curves (produced from the mod-
els with regularization values = 0.0001, 0.01 and 0.1) suggested that these initial models were being overfi t and 
that the regularization values were too small. When the regularization value was increased to one, the response 
curves smoothed out considerably and the overall performance of the model improved. Regularization values 
above one were not tested because the value of one performed well, and because larger values may have cre-
ated models that were too general, which would have over-predicted the distribution of mesophotic corals. 



acy of MaxEnt models evaluated? 
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(1 - specificity) 
Figure 2.7. ROC curve showing how a model performs relative to chance. 
The numbers below each curve are example AUC values. Figure adapted 
from Fielding and Bell 1997. 
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2.6. MODEL EVALUATION 
2.6.1. How was the performance and accur
Two metrics were used to measure MaxEnt’s
performance and accuracy in predicting me
sophotic hard coral presence in the Au’au
Channel Region. These metrics specifically
included: (1) receiver operating characteris
tic (ROC) curves, from which area under the
curve (AUC) test statistics were calculated,
and (2) an independent accuracy assessment
of the genera models’ commission errors and
the general hard coral model’s omission and
commission errors. ROC curves (Figure 2.7)
measure a model’s predictive performance
by comparing its sensitivity (i.e., true positive
prediction rate) to its specifi city (i.e., false pos
itive prediction rate), as the habitat suitability
threshold used to classify presence/absence
varies. However, since MaxEnt does not use
absence data, a randomly selected set of
background points (i.e., a random sample
of the full spectrum of environmental condi-
tions in the study area without regard to pres
ence/absence of corals) is used to estimate
the models’ specifi city (Phillips et al. 2006).
Together, specifi city and sensitivity help de
scribe the “rate” at which a MaxEnt model correctly versus incorrectly predicts the presence of mesophotic hard 
corals. This rate depends on the choice of a particular habitat suitability threshold value above which corals are 
classifi ed as “present” and below which corals are classifi ed as “absent.” Instead of choosing one threshold to 
assess model performance, the threshold-independent test AUC statistic was used to measure the overall pre
dictive performance of a model compared to a random guess. Test AUC values ranging from 0.7 to 0.8 denote 
“good” model performance; values from 0.8 to 0.9 denote “excellent” model performance, and values greater 
than 0.9 denote “outstanding” model performance (Hosmer and Lemeshow, 2000). Test AUC values at or below 
0.5 indicate that the model’s prediction was no better than one created by chance alone. It should be noted that, 
because MaxEnt uses background points rather than true absences to estimate specifi city, the maximum pos
sible test AUC value depends on what fraction of the study area is occupied by the species (maximum possible 
AUC = 1 - (a/2), where a = fraction of grid cells occupied by the species) (Wiley et al. 2003). When comparing 
models for widespread species to comparatively rarer species, one should keep in mind that the test AUC for 
more widespread species may be lower simply because of this upper bound on test AUC. 

In addition to ROC AUC values, an independent assessment of the models’ omission and commission errors 
was conducted as another measure of MaxEnt’s ability to generate reliable models. Omission errors describe 
the number of times that MaxEnt incorrectly predicted the absence of hard corals (sometimes referred to as a 
false negative). Commission errors denote the number of times that MaxEnt incorrectly predicted the presence 
of hard corals (sometimes referred to as a false positive). Together, these errors—along with the true positive 
(i.e., sensitivity) and true negative (specifi city) values—describe the overall accuracy of the models’ predictions. 
This accuracy assessment was conducted using a random 30% of the hard coral absence data (n = 4,332 points) 
and presence data (n = 852 points), neither of which were used during the model training process. Only absence 
data was used in this supplemental accuracy assessment of the genus-specifi c models because there were not 
enough presence records to set aside for model development. 

Problems associated with the spatial autocorrelation of this assessment data were addressed by fi rst analyzing 
the structure of the autocorrelation, and then selecting points for the accuracy assessment that were far enough 
apart to meet the assumption of statistical independence. Both global Moran’s I and Anselin Local Moran’s I sta
tistics indicated the presence of signifi cant spatial autocorrelation (p ≤ 0.0001). Given this signifi cance, a theoreti
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cal spherical variogram model was fi t to an 
empirical variogram for the mesophotic hard 
coral data using nonlinear least squares. Pa-
rameters for the variogram model were the 
following: nugget = 0.5, partial sill = 0.04, and 
range = 107 meters. A spherical model was 
chosen because it qualitatively fi t the empiri-
cal variogram the best, and because it is the 
only variogram model that includes a fi nite 
spatial range value (Kendall et al. 2005). The 
range of a variogram denotes the distance 
at which spatial autocorrelation becomes
negligible. Given the range of the spheri-
cal model, assessment points separated by 
more than 107 m (n = 1,301 for absence and 
n = 345 for presence) were considered to be 
essentially independent and selected for this 
assessment (Figure 2.8). Confusion matrices 
were created using these spatially indepen-
dent points for the general coral model at
habitat suitability values in increments of 0.1. 
The proportion of correctly predicted pres-

 

 

ence and absence records was then graphed 
against these habitat suitability values to determine the tradeoff between the predictive accuracy and generaliza-
tion of a model. 

2.6.2. How were habitat suitability thresholds chosen?
The habitat suitability value (or threshold) chosen to denote coral presence affects the sensitivity, specifi city and 
thus, overall accuracy of the prediction. If an extremely high suitability value is chosen to denote predicted pres-
ence (e.g. 0.8-1 for a very specifi c model), very little of the study area will be deemed suitable habitat. Accuracy 
(i.e., specifi city) will be very high for sites correctly identifi ed as lacking corals and low for sites correctly classifi ed 
as having them. If a very low suitability value is chosen to denote predicted presence (e.g. 0.1 for a very sensitive 
model), a large proportion of the study area will be deemed suitable habitat. This has the effect of producing very 
high accuracy for sites confi rmed as having hard corals (i.e., sensitivity) but low accuracy for sites lacking them. 

Given the tradeoffs in sensitivity and specifi city, the question arises of what suitability value should be applied 
for a given application. There are several approaches to selecting a threshold value, each with merits and draw-
backs (Fielding and Bell 1997, Liu et al. 2005). For this study, we chose to focus on the suitability value where 
combined sensitivity and specifi city reach the highest level. For suitability values in increments of 0.1, we added 
the proportion of correctly classifi ed presences and absences to identify the suitability of maximum combined 
sensitivity (the probability that the model will correctly predict presence) and specifi city (the probability that the 
model will correctly predict absence), hereafter noted as MCSS. Note that this MCSS number (derived from the 
independent accuracy assessment data) is based on a random subset of data and may vary slightly if a different 
subset were drawn.

MaxEnt provides a similar MCSS value based on the subset of presence data used to create the ROC curve. 
MaxEnt’s MCSS value is created using a subset of actual presence data just like the supplemental accuracy 
assessment described above, however instead of actual absences as were used above, pseudo absences are 
used. Recall that pseudo-absences are simply randomly selected locations in the study area where coral pres-
ence data is lacking and corals are assumed to be absent. MaxEnt provided the MCSS value for each of the 
10 model replicates that were run. We averaged these values across the 10 replicates for hard coral and each 
genus respectively. For each averaged model, we mapped grid cells above and below this suitability threshold as 
coral = present and coral = absent, respectively. We also show two hypothetical management situations (above 
and below this threshold) to further demonstrate the tradeoffs in model sensitivity and specifi city. Specifi cally, we 
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Figure 2.8. Location of spatially independent accuracy assessment points in 
Au‘au Channel Region.
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mapped values where this MCSS suitability was decreased by 50% (to demonstrate a situation where sensitivity 
was half as important as specificity) and increased by 50% (situation where specificity was more important). Note 
that as with the MCSS value above (derived from independent accuracy assessment data), this MCSS number 
is based on random data subsets and may vary slightly if different subsets are drawn. 

2.6.3. Which variable(s) mattered most to the models? 
In addition to understanding the performance and accuracy of the MaxEnt models, two different metrics were 
used to quantify the contribution of each environmental variable to each predictive model and its performance. 
These metrics included: (1) permutation importance and (2) jackknife analysis. Permutation importance denotes 
the reduction in test AUC (expressed as %) of the final MaxEnt model when variables’ values are randomly 
permutated. A large drop in permutation importance indicates that the model is heavily dependent on that par
ticular variable, while a small drop indicates that the predictor does not contribute much new information (i.e. 
the information it contains is redundant) (Phillips 2012). Jackknife analysis measures the contribution of each 
variable to a model’s gain (goodness of fit), and its impact on test AUC values. It does so by creating both (1) 
MaxEnt models using only one variable at a time, and (2) MaxEnt models that exclude one variable at a time. 
This process of inclusion and exclusion isolates the contribution of each predictor variable from the other vari
ables, and describes whether a particular variable improves or degrades the performance of a model. These two 
metrics were analyzed together and compared with each other to determine which variable(s) were the most 
influential and reliable predictors. Variables with permutation values > ~10% and single variable jackknife test 
AUC values > ~0.75 were considered important predictors of mesophotic coral presence in the Au’au Channel 
Region. Response curves were used to describe how habitat suitability changed logistically with the values of 
these predictors either in the context of a hypothetical single-variable model (single variable response curves) 
or in the context of the full multi-variable model with all other predictors held at their averages (multi-variable 
response curves). It should be noted that the multi-variable response curves were the actual models used to 
generate the final MaxEnt predictions, while single-variable response curves were simply produced to help with 
model interpretation. 
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CHAPTER 3: RESULTS 

Four separate MaxEnt models were created for predicting: 1) all mesophotic hard corals combined, 2) Leptos-
eris, 3) Montipora, and 4) Porites. For each model, we report overall fit and performance, a map of predicted en
vironmental suitability, prevalence of mesophotic corals in field data and model results, environmental variables 
of importance to the prediction based on permutation and jackknife tests, and response curves showing how the 
range of values for each of the important environmental variables affects the probability of suitable mesophotic 
coral habitat. Following the results for individual genera, models are compared on the basis of the predicted dis
tributions, list of influential variables, and differences in habitat partitioning. 

3.1. ALL MESOPHOTIC CORALS 
Mesophotic corals were observed in 16% 
of the ROV records in the study area (Ta
ble 2.1). The average test AUC (0.900) 
for the model of predicted distribution of 
all mesophotic corals combined indicat
ed ‘excellent’ overall model performance 
(defined in Hosmer and Lemeshow 2000; 
maximum AUC = 1-[0.16/2] = 0.92). The 
supplemental accuracy assessment 
based on a randomly selected 30% of ab
sence and presence records revealed the 
tradeoff between habitat suitability values 
and the proportion of accuracy assess
ment points correctly classified as present 
or absent (Figure 3.1). The point where 
the sum of these two types of prediction 
accuracy (i.e., correct presence and cor
rect absence) is maximized, or the MCSS, 
occurred at a moderate suitability value of 
0.3. This balances the two types of errors 
and correctly predicts both coral presence 
and absence at over ~73.1% of sites (Ta
ble 3.1). Note that these performance and 
accuracy statistics are based on a random 
subset of data and results will vary slightly if different subsets were drawn. 

Predicted probability of suitable environmental conditions for mesophotic corals overall were highest in a broad 
region in the eastern half of the Au‘au Channel in the area of the Lahaina Roads Basin and Lahaina Pinnacles 

Table 3.1. Two methods were used to describe predictive performance and accuracy of the MaxEnt models. The first method (a) withheld 
randomly selected data from the training dataset to assess each model run’s performance. The second method (b) randomly selected a 
data subset, which was not used during the training process, to independently assess the predictive accuracy of these ensemble models. 

Figure 3.1. Proportion of accuracy assessment sites correctly predicted as hav
ing hard corals present (blue) and absent (red) as a function of MaxEnt habitat 
suitability value chosen to denote coral presence. Correct presence and absence 
values are added and shown (green) with an arrow indicating the maximum sum. 
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MODEL 

(A) CROSS VALIDATION* (B) INDEPENDENT ACCURACY
ASSESSMENT*

 MEAN MAXENT 
THRESHOLD 

(± 1 σ) 

MEAN 
TEST AUC               

(± 1 σ) 
MAXIMUM 
TEST AUC 

MAXENT 
THRESHOLD 

PRESENCE 
PRODUCER’S 
ACCURACY 

(%) 

ABSENCE 
PRODUCER’S 
ACCURACY 

(%) 

OVERALL 
ACCURACY 

(%) 

All Hard Corals 0.25 ±0.029 0.90 ±0.002 0.92 0.30 80.9 71.0 73.1 

Montipora 0.15 ±0.025 0.97 ±0.003 0.98 0.15 - 86.1 -

Porites 0.07 ±0.040 0.95 ±0.027 0.95 0.07 - 85.3 -

Leptoseris 0.20 ±0.022 0.93 ±0.006 0.98 0.20 - 78.2 -

* These numbers are based on random subsets, and may changed based on the subset drawn. 
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Figure 3.2a and b. a) Predicted distribution of hard mesophotic coral habitat by suitability values (i.e., logistic output x 100%). * denotes 
feature described in Grigg et al. 2002. b) Proportion of the study area by suitability values for all hard corals.
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between Hanakaoo Point and Papawai Point (Figure 3.2a). Highly suitable conditions were also seen along the 
drowned ridges at the edge of the study depths south of Hekili Point. There were also disconnected pockets 
of more moderate suitability in other parts of the study area. Using the ROC curves, combined sensitivity and 
specifi city was maximized at a mean suitability value of 0.25 ±0.03 (±SD, n =10,Table 3.1). (Table 3.1). Eighty 
seven percent of the study area had suitability values below this maximized value (Figure 3.2b). Only 8% of the 
study area had suitability value above 0.375, the highest threshold that we considered. Seventy fi ve percent of 
the study area has suitability values below 0.125, the lowest that we considered. Note that these numbers are 
also based on a random subset of data and results will vary slightly if a different subset were drawn.

Key environmental variables for predicting mesophotic corals overall were partly identifi ed through the permu-
tation test wherein each variable was evaluated for its contribution to the MaxEnt model by randomly shuffl ing 
its values and measuring the reduction in AUC expressed as a percentage (Table 3.2). Based on permutation 
importance, infl uential variables were mean euphotic depth (28.9% reduction in AUC when randomized), mean 
depth calculated at the 200 m analysis scale (16.7% reduction in AUC), and standard deviation of euphotic depth 
(15.3% reduction in AUC). The jackknife test revealed that when used alone as predictors, a similar list of vari-
ables emerged as having relatively high AUC values including mean and standard deviation of euphotic depth 
(AUC = 0.78 and 0.79) and mean depth at any scale (AUC = 0.73 to 0.74) (Figure 3.3). Additions to these were 
mean sea surface temperature with an AUC of 0.82 and also distance to shore at any scale with an AUC of 0.72 



Table 3.2. Important variables for each model as measured by permutation. For each environmental variable in turn, the values of that 
variable on training presence and background data are randomly permuted. The model is re-evaluated on the permuted data and the drop 
in AUC compared to the model based on the actual data is shown as a percentage. Permutation importance values ≥ 5 are in bold font. 

PERMUTATION IMPORTANCE 

VARIABLE ALL HARD CORALS LEPTOSERIS MONTIPORA PORITES 

aspect_010m 0.2 0.5 0.2 0.2 

aspect_025m 0.3 0.6 0.2 1.1 

aspect_200m 2.6 5 1.3 0.1 

bathymetry_010m 5.6 7 17.9 12.5 

bathymetry_025m 2.6 9.9 2.5 38.3 

bathymetry_200m 16.7 6.7 6.9 0.4 

bpibroadstnd_010m 0.2 0.5 0.9 0.2 

bpibroadstnd_025m 0.4 0.9 0.8 0.1 

bpibroadstnd_200m 0.1 0 5.4 0 

currentsmean35m_010m 1.6 1.3 0.3 2.8 

currentsmean85m_010m 1.4 1.4 2.6 0.9 

currentsvar35m_010m 0.4 6.9 3.8 0 

curvature_010m 0.1 0.1 0.1 0 

curvature_025m 0.2 0.2 0.6 0 

curvature_200m 0.4 0.2 2.7 0.1 

curvatureplan_010m 0 0.1 0.1 3.5 

curvatureplan_025m 0.2 0.2 1.1 0.2 

curvatureplan_200m 0.6 1 0.4 1.7 

curvatureprofile_010m 0.1 0.1 0.1 0.2 

curvatureprofile_025m 0.3 0.3 0.3 3.4 

curvatureprofile_200m 0.7 0.5 0.9 0.1 

distancetoshore_010m 5.3 3.1 5.1 0 

distancetoshore_025m 0.4 0.7 0.6 0 

distancetoshore_200m 3.9 1.2 2.5 7.5 

euphoticdepthmean_010m 28.9 16.6 25.3 13 

euphoticdepthstdev_010m 15.3 9.7 2.6 8.5 

rugosity_010m 0.2 0.3 0.2 0.3 

rugosity_025m 0.5 0.6 0.1 0.2 

rugosity_200m 0.6 2.4 1.9 0.4 

slopeofslope_010m 0.3 0.4 0.5 0.1 

slopeofslope_025m 0.4 1 0.3 0.3 

slopeofslope_200m 5.7 11.8 0.5 0.1 

sstmean_010m 3.1 1.9 10.7 2.7 

sststdev_010m 0.6 6.9 0.9 1 
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Figure 3.3. Important variables in the all hard coral model as mea-
sured by jackknife of AUC. AUC is shown for the model with all 
variables (red), and for models without each variable (teal), and 
models based on only each individual variable (blue). 

page 
24 

C
ha

pt
er

 3
: R

es
ul

ts

  
 
 

Figure 3.4. Response curves for environmental variables important to 
the all hard coral habitat prediction. Single variable models exclude all 
other variables from the logistic prediction. Multi-variable models hold 
all other variables at their average values in the logistic prediction. 

when used as the sole predictor. Also of note, the elimination of single variables from the modeling process did 
not result in a large decline in AUC compared to the whole model. This indicates that the model is not dependent 
on any single variable and suggests that a high degree of redundant information is included in the model via 
correlated predictor variables. 

Response curves show how each environmental variable affects the MaxEnt prediction for mesophotic corals 
in logistic format. Only those variables noted as important in the permutation or jackknife tests are addressed 
here. The full suite of response curves for all variables is shown in Appendix A (contact lead author). When all 
other variables are held at their average values, mean depth appears to have an infl uence of decreasing environ
mental suitability as depth increases with lowest suitability deeper than ~115 m (Figure 3.4). When only depth is 
used as a predictor, the response pattern is similar except that the very shallowest areas are deemed unsuitable 
(Figure 3.4) and there is a clear peak in suitability between 45 and 75 m depth. When all other variables were 
held to their average values, euphotic depth showed a pattern of increasing suitability with higher values until 
leveling off or declining at around 100 m. When used alone, euphotic depth showed a pattern of peak suitability 
around 100 m with additional spikes in suitability at higher values. When all other variables were held to their av
erage values, standard deviation of euphotic depth showed a sudden increase in suitability at around 2 and then 
steadily declined as variance increased reaching unsuitable conditions at values of 5 and higher. When used 
alone, standard deviation of euphotic depth showed a similar but more variable pattern. When all other variables 
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are held to their average values, distance to shore showed highest suitability between 2 and 9 km. When used 
alone, three clear peaks in suitability were observed. These were centered at 3.5, 6.5 and 9 km from shore. Last, 
when all other variables were held to their average values or when used alone, suitability increased with sea 
surface temperature and showed a spike in suitability at 25.65°C.

3.2. MONTIPORA
Montipora was observed in 3.5% of the fi eld observations (Table 2.1). The average test AUC (0.967) for the 
model of predicted distribution of Montipora indicated ‘outstanding’ overall model performance (Hosmer and 
Lemeshow 2000; maximum AUC = 1-[0.04/2] =0.98). Four concentrations of fi eld observations were evident in-
cluding the middle of the Au‘au Channel off Lahaina, the Lahaina Pinnacles area, ~4.5 km off Launiupoko Point, 
and ~3.5 km off Hekili Point. The supplemental accuracy assessment indicated that the model correctly predicted 
coral absence at 86.1% of sites (based on MCSS suitability of <0.15 denoting absence). Predicted probability 
of suitable environmental conditions for Montipora was highest in the region of the Lahaina Pinnacles and 3.5 
km south and southeast of Hekili Point (Figure 3.5a). Using the ROC curves, combined sensitivity and specifi c-
ity was maximized at a suitability value of 0.15 ±0.03 or 1σ (Table 3.1). Ninety six percent of the study area had 
suitability values below this maximized value (Figure 3.5b). Only 3% of the study area had suitability value above 
0.225, the highest threshold that we considered. Ninety two percent of the study area has suitability values below 
0.075, the lowest that we considered.
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Figure 3.5a and b. a) Predicted distribution of Montipora habitat by suitability values (i.e., logistic output x 100%). * denotes feature de-
scribed in Grigg et al. 2002. b) Proportion of the study area by suitability value for Montipora.
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Key environmental variables for predicting Montipora identifi ed through the permutation test (Table 3.2) were mean  
euphotic depth (25.3% reduction in AUC when its values were randomized), mean depth calculated at the 10 m analy
sis scale (17.9% reduction in AUC), and mean sea surface temperature (10.7% reduction in AUC). The jackknife test  
revealed that when used alone, a similar list of variables emerged as having relatively high AUC values including mean  
and standard deviation of euphotic depth (AUC = 0.92 and 0.85), sea surface temperature (AUC = 0.87), and mean  
depth at any scale (AUC = 0.81) (Figure 3.6). Additions to this group were distance to shore measured at any scale  
(AUC = 0.77). Also of note, the elimination of single variables from the modeling process did not result in a large decline  
in AUC compared to the whole model. This indicates that the model is not dependent upon any single variable and the  
infl uence of individual variables can be mostly explained or accounted for by correlated variables as well. 

Response curves show how each environmental variable affected the MaxEnt prediction for Montipora in logistic for
mat. Only those variables noted as important in the permutation or jackknife tests will be addressed here with the full  
suite of response curves for all variables shown in Appendix A  (contact lead author).  When all other variables were  
held to their average values, euphotic depth showed a pattern of peak suitability at depths between 99 and 104 m  
with two much smaller peaks at 90 and 96 m (Figure 3.7). When used alone, euphotic depth showed 4 clear peaks in  
suitability at 91, 96, 99 and 104 m. When all other variables were held to their average values, standard deviation of  
euphotic depth showed a plateau of high suitability between 2.5 and 4.3. When used alone, standard deviation of eu
photic depth showed a tight cluster of four peaks at values between 2.5 and 3.9. When all other variables were held to  
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Figure 3.6. Important variables in Montipora model as measured 
 
 

Figure 3.7. Response curves for environmental variables important 
to Montipora prediction. Single variable models exclude all other 
variables from the logistic prediction. Multi-variable models hold all 
other variables at their average values in the logistic prediction. 

by jackknife of AUC. AUC is shown for the model with all variables
(red), and for models without each variable (teal), and models
based on only each individual variable (blue). 
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their average values, depth calculated at the 10 m scale shows a pattern of low suitability in deep regions with rapidly 
increasing suitability beginning at 75 m into shallower areas (Figure 3.7). When used alone, depth measured at the 10 
m scale showed peak suitability between 45 and 75 m depth. When all other variables were held to their average val-
ues, distance to shore showed increasing suitability with higher values. When used alone, distance to shore measured 
at any scale also showed four or more distinct peaks of suitability. These were at 3.5, 5, 7, and 8.1 km from shore. Last, 
when all other variables were held to their average values, suitability for mean sea surface temperature showed a spike 
at 25.65°C and a plateau of high suitability between 25.95 and 26.2 °C. When used alone, suitability showed three 
distinct peaks at values 25.64, 26.15, and 26.22 °C.

3.3. PORITES
Porites was observed in <1% of the fi eld observations (Table 2.1). The average test AUC (0.952) for the model of pre-
dicted distribution of Porites indicated ‘outstanding’ overall model performance (Hosmer and Lemeshow 2000; maxi-
mum AUC=1-[0.1/2]=0.95). The supplemental accuracy assessment indicated that the model correctly predicted coral 
absence at 85.3% of sites (based on MCSS suitability of <0.07 denoting absence). Predicted probability of suitable en-
vironmental conditions for Porites was highest in a focused region along the eastern side of the Au‘au Channel between 
Hanakaoo Point and Hekili Point with a hotspot in the vicinity of the Lahaina Pinnacles (Figure 3.8a). Using the ROC 
curves, combined sensitivity and specifi city was maximized at a mean suitability value of 0.07 ±0.04 (±SD, n =10,Table 
3.1). Ninety two percent of the study area had suitability values below this maximized value (Figure 3.8b). Only 5% of 
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Figure 3.8a and b. a) Predicted distribution of Porites habitat by suitability values (i.e., logistic output x 100%). * denotes feature de-
scribed in Grigg et al. 2002. b) Proportion of the study area by suitability value for Porites.
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the study area had suitability value above 0.105, the highest threshold that we considered. Eighty six percent of the  
study area has suitability values below 0.035, the lowest that we considered.  

Key environmental variables for predicting Porites identifi ed through the permutation test (Table 3.2) were mean depth  
calculated at the 10 and 25 m analysis scales (12.5% and 38.3% reductions in AUC when their values were random
ized respectively). The jackknife test revealed that when used alone, bathymetry again emerged as having relatively  
high AUC values (AUC = 0.85 to 0.86) (Figure 3.9). Additional variables of importance using the jackknife approach  
were distance to shore at any scale (AUC = 0.79), and mean euphotic depth and its standard deviation (AUC = 0.82  
and 0.84). Also of note, the elimination of single variables from the modeling process did not result in a large decline in  
AUC compared to the whole model. This indicates that the Porites model is not dependent upon any single variable and  
the infl uence of individual variables can be mostly explained or accounted for by correlated variables as well.  

Response curves show how each environmental variable affected the MaxEnt prediction for Porites in logistic format.  
These single variable response curves were smoother than the response curves for all hard corals, Montipora and  
Leptoseris because they were built with the fewest number of records. Only those variables noted as important in the  
permutation or jackknife tests will be addressed here with the full suite of response curves for all variables shown in Ap
pendix A  (contact lead author).  When all other variables were held to their average values, mean depth calculated at  
the 10 or 25 m scales showed a pattern of increasing suitability with shallower waters (Figure 3.10). When used alone,  

mean depth calculated at the 10 or 25 m scales showed  
a distinct peak in suitability at 45-50 m. When all other  
variables were held to their average values, distance to  
shore showed little variation in suitability across values at  
the 10 and 25 m analysis scales. At the 200 m analysis  
scale, a sudden increase in suitability was observed at  
2.5 km from shore followed by a gradual decline in suit
ability with higher values. When used alone, distance to  
shore measured at any scale showed a distinct peak of  

Figure 3.9. Important variables in Porites model as measured by 
jackknife of AUC. AUC is shown for the model with all variables 
(red), and for models without each variable (teal), and models 
based on only each individual variable (blue). 
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Figure 3.10. Response curves for environmental variables impor
tant to Porites prediction. Single variable models exclude all other 
variables from the logistic prediction. Multi-variable models hold all 
other variables at their average values in the logistic prediction. 
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suitability at 2.5 km from shore followed by a rapid decline in suitability. Of note, there were few fi eld surveys conducted 
closer to shore than this distance. When all other variables were held to their average values, mean euphotic depth 
showed a gradual increase to very high suitability with deeper values. When used alone, mean euphotic depth showed 
a distinct peak at 99 m. When all other variables were held to their average values, standard deviation of euphotic depth 
showed high suitability at low values and then a rapid decline in suitability as variance increased. When used alone, 
standard deviation of euphotic depth showed a distinct peak at 2.7. 

3.4. LEPTOSERIS
Leptoseris was observed in 3.6% of the fi eld observations (Table 2.1). The test AUC (0.930) for the model of predicted 
distribution of Leptoseris indicated ‘outstanding’ overall model performance (Hosmer and Lemeshow 2000; maximum 
AUC = 1-[0.04/2] =0.98). The supplemental accuracy assessment indicated that the model correctly predicted coral 
absence at 78.2% of sites (based on MCSS suitability of <0.2 denoting absence). Predicted probability of suitable 
environmental conditions for Leptoseris was highest in the south/central region of the Au‘au Channel off of Hekili Point 
(Figure 3.11a). Highly suitable conditions were predicted along many edges of drowned basins and ridge tops with a 
hotspot of suitability located at 20°46’ N, 156°41’ S. Using the ROC curves, combined sensitivity and specifi city 
was maximized at a mean suitability value of 0.20 ±0.02 (±SD, n =10, Table 3.1). Ninety one percent of the study 
area had suitability values below this maximized value (Figure 3.11b). Only 5% of the study area had suitability 
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Figure 3.11a and b. a) Predicted distribution of Leptoseris habitat by suitability values (i.e., logistic output x 100%). * denotes feature 
described in Grigg et al. 2002. b) Proportion of the study area by suitability value for Leptoseris.
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value above 0.3, the highest threshold that we considered. Eighty three percent of the study area has suitability 
values below 0.1, the lowest that we considered. 

More variables were deemed important for Leptoseris than for other models. Key environmental variables for 
predicting Leptoseris identifi ed through the permutation test (Table 3.2) were slope of the slope measured at the 
200 m analysis scale (11.8% reduction in AUC when its values were randomized), mean euphotic depth and 
its standard deviation (16.6% and 9.7% reduction in AUC respectively), and mean depth calculated at the 25 m 
analysis scale (9.9% reduction in AUC). The jackknife test revealed that when variables were used alone, a simi
lar list emerged as important by having relatively high AUC values. These were mean and standard deviation of 
euphotic depth (AUC = 0.79 and 0.76), mean depth at any scale (AUC = 0.77 to 0.78), and slope of the slope at 
the 200 m analysis scale (AUC = 0.77) (Figure 3.12). Additions to this group were distance to shore at any scale 
(AUC = 0.78), rugosity measured at the 200 m scale (AUC = 0.76), and mean sea surface temperature and its 
standard deviation (AUC = 0.81 and 0.78). Also of note, the elimination of single variables from the modeling 
process did not result in a large decline in AUC compared to the whole model. This indicates that the Leptoseris  
model is not dependent on any single variable and the infl uence of individual variables can be mostly explained 
or accounted for by closely correlated variables as well. 
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Figure 3.12. Important variables in Leptoseris model as measured
by jackknife of AUC. AUC is shown for the model with all variables
(red), for separate models formulated without each variable (teal),
and for separate models formulated with only each individual vari-
able (blue).  

Figure 3.13. Response curves for environmental variables impor
tant to Leptoseris prediction. Single variable curves are based on 
single-variable MaxEnt models that excluded all other variables. 
Multi-variable response curves are based on varying the value of 
the indicated predictor in the final full MaxEnt model while holding 
all other variables at their average values. 

 
 
 



moderate values with two high peaks in suitability at 6 and 9 km from shore and two smaller peaks at 2 and 4 
km. When all other variables were held to their average values, rugosity measured at the 200 m scale showed a 
pattern of increasing suitability with higher values, reaching ~90% habitat suitability at highest rugosities. When 
used alone, rugosity measured at 200 m showed an exponential increase in predicted suitability before leveling 
off at very high suitability for higher rugosity. Last, when all other variables were held to their average values, 
suitability was fl at for mean sea surface temperature, but when used alone, suitability gradually increased with 
warmer values and showed spikes in suitability at 25.5 and 26.2°C. Standard deviation of sea surface tempera
ture showed higher suitability at low values whether used alone or when all other variables were fi xed to their 
average values. 

Response curves show how each envi
ronmental variable affected the MaxEnt
prediction for Leptoseris in logistic format. 
Only those variables noted as important
in the permutation or jackknife tests will
be addressed here with the full suite of re
sponse curves for all variables shown in 
Appendix A (contact lead author). When
all other variables were held at their aver
age values or when used by itself, slope 
of the slope appears to have an influence 
of increasing environmental suitability as 
values increase (Figure 3.13). When all
other variables were held to their average 
values, depth at the 200 m scale shows 
a peak in suitability around 70 m depth
(Figure 3.13). Depth measured at the 10 
and 25 m scales showed generally high 
suitability values from shallow regions to 
depth of 110 m before declining. When
used alone, depth measured at all scales 
showed a clear peak in suitability between 
80 and 110 m depth and a smaller peak at 
65 m. When all other variables were held 
to their average values, euphotic depth
showed a pattern of increasing suitabil
ity with deeper values. When used alone, 
euphotic depth showed a pattern of peak 
suitability between 98 and 106 m with oc
casional spikes in suitability at lower val
ues. When all other variables were held 
to their average values, standard devia
tion of euphotic depth showed a sudden 
increase in suitability at around 2 and then 
steadily declined as variance increased
reaching unsuitable conditions at values 
of 5 and higher. When used alone, stan
dard deviation of euphotic depth showed a 
similar but more variable pattern. When all 
other variables were held to their average 
values, distance to shore showed slightly 
increasing suitability at larger distances
when measured at fi ner scales. When
used alone, distance to shore measured 
at any scale showed highest suitability at 

  Image 2. The Pisces V submersible working on a mesophotic reef of Leptoseris 
hawaiiensis corals on a small rock outcrop at a depth of 102 m. Photo Credit: HURL. 

 

 

Image 3. Scientist Ray Boland surveys fish communities on a low relief “carpet” of 
branching Montipora capitata corals. These reefs cover 10s of square kilometers 
of seafloor off the coast of West Maui. Photo Credit: J. Rooney. 
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3.5. COMPARISONS AMONG GENERA 
The three genera, Leptoseris, Montipora, and Porites shared several variables deemed infl uential to each of their 
specifi c models. Important variables in models of all three genera included depth, distance from shore, mean 
euphotic depth, and variance of euphotic depth. Comparisons across the genera among the single variable re
sponse curves for these predictors offer some insight into how these three genera may partition the space in the 
Au‘au channel region. Depth of peak suitability was shallowest for Porites (~43 m), deeper for Montipora (~59 
m), and covered a broad but deeper still range of depths for Leptoseris (~82 m) (Figure 3.14a). Peak suitability 
for distance to shore was shortest for Porites (~2.4 km), slightly farther offshore for Montipora (~3.7 km), and 
farthest offshore for Leptoseris (peaks at ~6.1 and ~9 km) (Figure 3.14b). In contrast, to depth and distance to 
shore, mean and variance of euphotic depth showed broadly overlapping suitability for all 3 genera. Leptoseris  
had the deepest peak at euphotic depth of 106 m, followed by Montipora at 103 m and Porites at 99 m (Figure 
3.14c). Leptoseris showed peak suitability in areas of lower variability in euphotic depth than Porites and Monti-
pora (Figure 3.14d). 
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Figure 3.14a-d. Overlay of the Leptoseris, Montipora, and Porites single-variable MaxEnt response curves for the variables: (a) mean 
depth, (b) distance from shore, (c) mean euphotic depth, (d) and standard deviation of euphotic depth. 

Comparing model results can be misleading when based on organisms with markedly differing prevalence. For
tunately, all models created here were for comparatively rare biota. Qualitative evaluation revealed that the three 
genera occupied somewhat different parts of the study area. A combined plot of each genus showing only where 
suitability was greater than MCSS indicated only a small area in the region south of the Lahaina Pinnacles where 
suitable habitat overlapped for all three genera (black area in Figure 3.15). Outside the area of overlap, Porites  
suitability was dominant 2-3 km off of Lahaina, Montipora suitability dominated 3-4 km south of Hekili Point, and 
Leptoseris suitability was dominant along the ridges 6-9 km offshore around Hekili Point. Many areas are evident 
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where the three genera occupy adjacent but not overlapping bands of suitable habitat. This highlights habitat 
partitioning among genera along environmental gradients on the ridges and basin walls of the ocean fl oor in the 
Au’au Channel. 
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Figure 3.15. Predicted distribution of suitable habitat (based on MCSS) for Porites, Leptoseris, and Montipora. Black denotes co-occur
rence of suitable habitat for all three genera. * denotes feature described in Grigg et al. 2002. 
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CHAPTER 4: DISCUSSION AND CONCLUSION 

4.1. DISCUSSION 
4.1.1. Modeled Distribution of Mesophotic Corals 
MaxEnt produced accurate predictions of habitat suit
ability for MCEs, as measured by high values of the 
test AUC statistic and independent accuracy assess
ment. The four MaxEnt models developed here show 
that highly suitable locations for mesophotic hard cor
als are both relatively rare and distributed unevenly 
in the Au’au Channel Region. No one environmental 
variable (tested here) fully explained why suitable 
MCE habitat was clustered in certain locations. How
ever, eight predictors were identified as being impor
tant for predicting suitable MCE habitat across three 
of the four MaxEnt models, and four of these same 
predictors were important to all of the MaxEnt mod
els. Some of these eight predictors had positive rela
tionships with MCE habitat suitability (within certain 
thresholds), while others had negative relationships. 
Habitat suitability for each coral model overlapped 
across the range of predictor values examined here, 
although peak suitability occurred at different values 
of the predictors for different groups. A more detailed 
discussion about these eight predictors, the differ
ences and similarities in peak suitability among gen
era, and their influence on habitat predictions by geo
graphic region is located below. 

4.1.2. Southeastern Au‘au Channel 
The majority of suitable habitat for all MCEs and for 
Montipora is predicted to be on the southeastern 
side of the Au‘au Channel between Lahaina Roads 
Basin and Papawai Point. This southeastern area is 
characterized by relatively warmer (at the surface), 
moderately deep and less turbid waters than parts of 
the north, west and southwest Au‘au Channel and the 
Au‘au Channel Region as a whole. Euphotic depth, 
which is a proxy for both PAR and turbidity, also ap
pears to be less variable in this southeastern location 
than in most parts of the study area, remaining con
sistent (> 1% PAR depth within ± 2.3 m) over a six 
year period from 2004 to 2010. Water temperature 
measurements taken near this area in 2001 indicate 
that this layer of warm water (around 26 °C) may be 
fairly stable down to about 60 m, after which it drops 
to around 23 °C around 111 m (Figure 4.1; Grigg 
2006). The variation in temperature profiles down to 
60 m is similar to the temperature variation seen in 
the SST imagery (i.e., ± 0.9 °C). These numbers and 
patterns suggest that SST may be a proxy for warmer 
water down to approximately 60 m in depth, although 
more measurements are needed to better charac
terize tidal and seasonal influences on the spatial 
and temporal heterogeneity of water temperature at 

Image 4. Clouds of small reef fish hover over a reef of mixed corals, 
algae and sponges at a depth of 226 ft. Photo Credit: J. Rooney. 
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Figure 4.1. Four full-water column temperature measurements taken 
on November 28, 2001 in the middle of the Au‘au Channel between 
Maui and Lanai. Figure adapted from Grigg 2006. 



C
ha

pt
er

 4
: D

is
cu

ss
io

n 
an

d 
C

on
cl

us
io

n 

page 
36 

depth. For MCEs (in general) and Montipora (specifi cally), these environmental trends suggest that on the whole 
these two groups prefer relatively warmer, moderately deep waters that remain optically clear and stable through 
time. These habitat preferences are highlighted by the jackknife results, which show the highest habitat suitability 
values for all mesophotic corals together and Montipora specifi cally occurred at moderate depths (70 and 59 
m, respectively) and in warmer (26.22 and 26.13 ° C at the surface), clearer (>1% PAR depth of 103 m) waters 
(Figure 4.2). It is interesting to note that Montipora is considered to be a habitat generalist (Maragos 1977). The 
fact that Montipora’s preferences closely mimic those of all mesophotic corals (included in this model) seems to 
reinforce this concept, and may help explain why it is the only genus whose spatial patterns predominantly follow 
those of the general mesophotic coral model. 

These depth preferences and thresholds are in close agreement with the fi ndings of Rooney et al. 2010, which 
reported that cover of hard mesophotic corals peaked at approximately 60 m, and that Montipora was one of 
the most common coral genera found in 50 to 80 m of water. However, these thresholds differ from the results 
reported by Kahng and Kelley 2007, which found Montipora to be rare in the 50 to 80 m range. It is interesting to 
note that the ROV transects in the Au‘au Channel analyzed by Kahng and Kelley did not intersect with the spatial 
distribution of highly suitable Montipora habitat predicted by MaxEnt. This geographic mismatch suggests that 
Kahng and Kelley may have sampled in areas with relatively poor ambient conditions for Montipora or a different 
range of environmental variables than were included in this study. It is very possible that these environmental 
variables (especially depth, distance to shore and SST) are proxies for other environmental conditions favorable 
to MCE and Montipora recruitment and growth. For example, depth and distance to shore are most likely corre
lated proxies for light availability, since generally speaking, the seafl oor becomes deeper and the water becomes 
less turbid further from land. Kleypas et al. 1999 found this same positive correlation between PAR and distance 
from shore when comparing nearly 1,000 reef locations around the world. High SST may be a proxy for calm, low 
runoff, low turbidity waters. The area of highest SST overlaps with the relatively windless, low rainfall, low wave 
energy, leeward side of west Maui. 
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Figure 4.2. The dependence of maximum predicted suitability values on the four most important predictors (i.e., depth, distance to shore, 
euphotic depth mean and euphotic depth stdev) for all four models. These values are based on the single variable response curves. The 
predictor value that resulted in the highest habitat suitability score is located on top of each bar for each model. 



4.1.3. Eastern Au‘au Channel 
The majority of suitable habitat for Porites is 
predicted to be on the eastern side of the Au’au 
Channel between Hanakaoo and Launiupoko 
Point. Similar to the southeastern area de
scribed above, this area is characterized by
relatively warmer, slightly shallower and less 
turbid waters than found in other parts of the 
study area. Based on the temperature profiles 
reported above (Grigg 2006), temperature most 
likely remains within the tolerated range for
some species of Porites down to over 100 m in 
this area (Kleypas et al. 1999; Kahng and Kel
ley 2007). It is also important to note that turbid
ity levels vary slightly more (> 1% PAR depth 
within ± 2.7 m) and SST varied slightly less 
(±0.33ºC) in this area than in locations further 
to the south where the Au’au and Kealaikahiki 
Channels meet. Collectively, these environ
mental suitability trends suggest that Porites  
prefers shallower waters than Montipora and all 
mesophotic hard corals combined. These depth 
preferences agree with the fi ndings of Rooney 

 

 

et al. 2010, which reported that depths from 30 to 50 m were dominated by several shallow water coral species, 
including Porites lobata. They also agree with the results of Grigg 2006, which reported that whereas P. lobata 
can grow at depths up to 100 m, it is more common to fi nd this species at depths shallower than 50 m since reef 
accretion ceases below this depth threshold. 

Given these consistent depth preferences, it is likely that Porites is limited by the availability of PAR more so than 
by temperature (Grigg 2006; Kahng et al. 2010) or by any other predictor included in this study. This relation
ship is not new, as the depth limit of reef building corals has long been associated with decreasing PAR (Wells 
1957; Dustan 1975; Kleypas et al. 1999). Even though Porites distributions may primarily be limited by light, the 
MaxEnt output model also suggests that Porites can tolerate slightly more turbid (although still exceptionally 
clear) waters than either Montipora or all hard corals combined. This increased resilience agrees with the find
ings of Piniak 2007, who reported that Porites lobata experienced less tissue damage from sedimentation than 
did Montipora capitata  because of its more rugose morphology. These habitat preferences are quantifi ed by the 
jackknife results, which show the highest habitat suitability values for Porites occurred at comparatively shallow 
depths (43 m) and in the most turbid waters (>1% PAR depth at 99 m) out of any of the models. Porites’s high
est habitat suitability values were also located the closest to shore (2.4 km), likely because distances closer to 
shore are correlated with and a relatively good proxy for decreasing depth, increasing turbidity and increasing 
variability in PAR. In addition to distance to shore, it is also likely that other predictors, notably depth, are proxies 
for environmental conditions favorable to Porites recruitment and growth that were excluded from this analysis. 

4.1.4. Southern Au‘au Channel 
The majority of suitable habitat for Leptoseris is predicted to be in the southern part of the Au’au Channel close 
to where it meets with the Kealaikahiki Channel. This area has similarly warm water temperatures as in the east
ern and southeastern areas discussed above. However unlike these two areas, the southern part of the Au’au 
Channel had deeper waters on average. It also has the most consistently warm (26.2 °C) and clear waters (> 
1% PAR depth within ± 2 m) compared to any other part of the Au’au Channel or study area as a whole. Also, the 
water temperature at depth most likely remains within the tolerated range for Leptoseris (i.e., > 19 °C) down to 
120 m in this area (Grigg 2006; Kleypas et al. 1999; Kahng and Kelley 2007). Collectively, these environmental 
trends suggest that Leptoseris prefer slightly deeper, substantially less turbid and less variable waters (in terms 
of turbidity and, possibly, temperature) than Montipora, Porites and all hard corals combined. These habitat pref
erences are quantifi ed by the jackknife results, which show the highest habitat suitability values for Leptoseris  
occurred at the deepest depths (82 m), in the least turbid (>1% PAR depth at 106 m) and least variable waters 

Image 5. Close up view of a mesophotic reef dominated by branching Mon-
tipora capitata corals with a few Leptoseris corals mixed in, although this 
depth is shallower than where they are typically encountered. Photo Credit: 
J. Rooney. 
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(>1% PAR within ± 2.1m and SST ±0.33 °C) 
compared to any of the other models. 

These depth preferences and thresholds are in 
close agreement with the findings of Kahng et al. 
2010, which reported that Leptoseris were com
monly found in the deepest parts of the meso
photic zone across the Pacifi c. They also agree 
with those of Rooney et al. 2010 and Kahng and 
Kelley 2007, which documented that the hard 
substrata between 80 to 90 m was dominated 
by aggregations of Leptoseris. However, Lepto-
seris has been recorded at deeper depths in the 
MHI, including at 131 m and 153 m near Pen
guin Banks and Kealakekua Bay, respectively 
(Kahng and Maragos, 2006; Kahng and Kelley 
2007). Leptoseris’s presence at these excep
tionally deep depths suggest that temperature 
is not a limiting factor for its growth in Hawaii 
(Kleypas et al. 1999; Kahng and Kelley 2007), 
even though temperature at the water surface 
was identifi ed as an important predictor in this modeling process. Therefore, SST (especially standard deviation) 
is most likely a proxy for another environmental variable describing the stability of the water conditions in the 
area. The availability and stability of PAR was identified as one of those stable conditions by MaxEnt. Leptos-
eris’s preference for less turbid and more optically stable waters also aligns with the findings of Kühlmann 1983, 
which showed that corals with flat morphologies (like Leptoseris) are poorly adapted to resist and more sensitive 
to sedimentation (Kahng et al. 2010). These flat morphologies are also less effective for passive suspension 
feeding than the branching structure of many azooxanthellate corals (Kahng et al. 2010). Despite potentially 
being less effective at heterotrophy and more susceptible to sedimentation, the flat, plate-like morphologies and 
dark brown pigmentation of Leptoseris and other mesophotic corals have advantages, including being special
ized for capturing the maximum amount of light (Kahng and Kelley 2007; Kahng et al. 2010). 

In addition to being found most commonly at the deepest depths, Leptoseris’s highest habitat suitability values 
were also located the furthest from shore (6.1 km), likely because distance to shore is correlated with and a rela
tively good proxy for increasing depth, decreasing turbidity and reduced variability in PAR (Kleypas et al. 1999). 
In addition to these four predictors, rugosity and slope of slope (both at 200 m scales) were also important for 
predicting Leptoseris distributions. None of the other MaxEnt models identifi ed seafloor complexity as being im
portant. The Leptoseris model’s inclusion of these morphometrics suggest that some other variable associated 
with high complexity, such as available hardbottom, may also play a role in determining the distribution of Leptos-
eris. Competition for space appears to be less of a factor in the mesophotic zone (Avery and Liddell 1997), since 
macroalgal abundance decreases significantly with increasing depth (Kahng et al. 2010). This may lead to a 
situation in which the total amount of available hardbottom becomes an important driver of coral distribution. This 
hypothesis is in keeping with the results of Kahng and Kelley (2007), which suggest that the availability of hard-
bottom may be a limiting factor for Leptoseris to colonize depths below approximately 90 m. It may also explain 
why Leptoseris is not found in the southwestern part of the Au’au Channel, which appears to have similar depth, 
temperature and turbidity conditions as the southern and southeastern parts of the Channel. Further analysis of 
the ROV data used for this modeling exercise showed that this southwestern area had less hardbottom on aver
age than the southern part of the Au’au Channel (i.e., 1.3% ±11.0% versus 5.5% ±22.4%, respectively). 

4.1.5. The Au‘au Channel Region 
The Au‘au Channel is a unique location among the islands of Maui, Kahoolawe, Lanai and Molokai. It is unique, 
not only in terms of its geology (Grigg et al. 2002), but also in terms of its physical oceanography and local 
weather patterns (Fletcher et al. 2008), making it an optimal environment for coral growth (Grigg 1982). There 
are several physical conditions that help make the Au‘au Channel (specifically the southeastern portion) an ideal 
place for mesophotic hard corals. These conditions include having consistently good water quality and clarity 

Image 6. Photo from a benthic transect over a reef of Leptoseris corals inter
spersed with Halimeda algae at a depth of 250 ft. Photo Credit: J. Rooney. 



 

 

  
 

 

 
 

 
 

  

because it is flushed by tidal currents semi-diurnally; the amount of sediment run-off from the nearby land (i.e., 
notably between Launiupoko and Papawai Points) is lower than in other parts of Maui (Grigg 2006; Fletcher et al. 
2008); and the sediments that do enter the water column are not continually resuspended because this area is 
largely protected from seasonally strong wind and wave energy. Being protected from this strong wind and wave 
energy is also important because it creates conditions favorable to faster rates of coral accretion (Dollar 1982; 
Dollar and Tribble 1993; Grigg 1998), and because it reduces the amount of mixing that occurs in the water col
umn during the summer. This reduction in mixing may allow the water column to warm more uniformly (as seen 
in the summer water temperature profiles by Grigg 2006), pushing the thermocline (below the one seen at ~5 m) 
deeper than in other nearby locations. Combined, these oceanographic and weather conditions create patches 
of comparatively warm, calm, clear waters that remain relatively stable through time. 

Although there were some slight differences among the MaxEnt models, these three environmental conditions 
(i.e., warm, clear and consistent water conditions) were the most important variables for predicting the distribu
tion of mesophotic hard corals. This trend may help explain why the distributions of all hard corals, Leptoseris, 
Montipora and Porites fell primarily between Hanakaoo and Papawai Points, which appear to have the most 
stable local weather and water conditions in the Au’au Channel. This environmental stability occurs for a number 
of reasons, including being wholly sheltered from the damaging North Pacific waves and strong trade winds by 
the western Maui mountains. Shielding from strong winds and large waves may explain why a consistently warm 
mass of water sits between these two points almost year round. Water quality conditions appear to be equally 
stable in this location, and remain consistently clear year-round. Lower amounts of rainfall and lower amounts of 
urban and agricultural development in the adjacent coastal watersheds may help explain why the area between 
the Hanakaoo and Papawai Points area is not as turbid as areas to their north and south. 

While these regional environmental conditions seem to explain mesophotic coral distributions very well at the 
scales examined in this study, it is also highly likely that historical events (e.g., the coral harvesting for jewelry) 
and several other biological and ecological factors, including predation, inter/intra-species competition and re
cruitment, have and are playing a significant role in shaping distributions, especially at finer spatial scales. How
ever, the influence of these biological and ecological forces on the spatial heterogeneity and species diversity 
of mesophotic corals is poorly understood, and may change based on species, depth, location and scale. For 
example, Kahng and Kelley (2007) documented competition for space between Halimeda and Leptoseris above 
80 m, as well as between zooxanthellate and azooxanthellate corals below 90 m in the Au’au Channel. Also, the 
introduced species, Carijoa riisei, has been reported to compete with native black corals in this same location 
(Kahng and Grigg 2005). These two types of competition would most likely have the greatest impact on Lepto-
seris. More research needs to be conducted examining how these forces shape mesophotic coral community 
assemblages. 

4.2. MANAGEMENT APPLICATIONS 
Managers must first understand the spatial distribution of habitats and organisms before they can devise appro
priate strategies to manage them. Where are important habitats found? How abundant are species of concern? 
What threats are located near key resources? How do key resources overlap with each other? Do existing regu
lations effectively promote resilience of important biota or do management plans need to be updated to refl ect a 
new understanding of present conditions? 

This study quantified the rarity and predicted spatial extent of MCEs within an existing MPA. The entire study 
area is encompassed by one section of the HIHWNMS. The findings contribute to the Sanctuary goal of identify
ing additional resources and ecosystems of national significance (Oceans Act 1992, NMSP 2002, HIHWNMS 
and DAR 2007). Knowledge of where MCEs occur within the Sanctuary informs potential modifications to man
agement plans. 

Results can be used to identify large areas of high suitability by genus or to target conservation actions in limited 
but diverse areas where all three genera are predicted to overlap. Results can not only be used to delineate 
subzones within the sanctuary if special regulations are needed to protect MCEs, but also to target and promote 
research and educational activities on these important and rare habitats. The georeferenced prediction maps 
may also be evaluated together with the spatial distribution of other biota (e.g. whales) or human activities to 
devise ways to minimize conflicts in areas with many overlapping resources and uses. Seafloor planning for any 
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type of development such as outfall pipe positions, cable routing, mooring/anchoring areas, and other seafloor 
uses will rely on this type of information to minimize harmful impacts. 

Marine spatial planning will become increasingly important for MCEs over the next decade as Hawaii works 
towards meeting it sustainable energy goals. The application of this type of model may aid many areas outside 
as well as within the HIHWNMS. Agencies such as the State of Hawaii Departments (including Department of 
Business, Economic Development and Tourism, Department of Land and Natural Resources and Department of 
Health), U.S. Department of the Interior’s Bureau of Ocean Energy Management, NOAA’s Ocean and Coastal 
Resource Management, and the U.S. Army Corps of Engineers all play a role in supporting, authorizing and/or 
licensing projects or their components for clean energy development in Hawaiian Waters. Future work could ap
ply this modeling approach to other areas in order to assist with broader marine spatial planning needs. 

Important to consider in any application is selecting an appropriate level of habitat suitability. For some manage
ment decisions it may be desirable to know only where the most highly suitable MCE habitats are located. For 
others, it may be beneficial to also consider predicted locations of moderately suitable habitat. MaxEnt offers 
two ways of adjusting model sensitivity (i.e., the probability of correctly identifying true presence locations) and 
specificity (i.e., the probability of correctly identifying true absence locations). One way in which model sensitivity 
and specificity can be adjusted (before model development) is through tuning the regularization parameter. In 
this study, we have kept the regularization multiplier (beta) fixed at its default value of 1 for simplicity. Larger val
ues of the regularization parameter create simpler, smoother models that are not constrained as tightly to match 
environmental conditions at observed presence locations. This can be useful when trying to create models that 
generalize well to new study areas, or when tuning model predictions against independent accuracy assess
ments, but it is a complex subject and should be used only with care and a thorough understanding of MaxEnt’s 
regularization scheme (Phillips and Dudík, 2008; Warren and Siefert 2011). 

A second way in which model sensitivity and specificity can be adjusted (after model development) is through 
the selection of a particular habitat suitability threshold value (between 0 and 1), above which areas are classi
fied as “suitable.” We demonstrate how the choice of this threshold affects errors of omission and commission. 
Depending on the application, it may be more important to correctly identify locations of coral presence. For 
example, researchers interested in studying MCEs will want to be able to reliably locate those communities. For 
other applications, it may be better to accurately know where coral is likely to be absent. For example, companies 
installing undersea cables will want and need to reliably avoid those communities. A more balanced approach 
that equates sensitivity and specificity may be most appropriate for other applications not discussed here. 

Future efforts should examine how to optimize the habitat suitability thresholds for different applications within 
the HIHWNMS. One possibility for tailoring the suitability thresholds is to use different combinations of sensitivity 
and specificity in the MaxEnt ROC curve (Fielding and Bell 1997; Liu et al. 2005). Two threshold methods have 
been found to perform the best when trying to balance sensitivity and specificity (Liu et al. 2005). The fi rst method 
is called equal test sensitivity and specifi city. This method finds the point on the ROC curve where the difference 
between the ratio of correct presence records and the ratio of correct absence records is minimized. In this study, 
we used the second method, called maximum test sensitivity plus specificity or MCSS. This method fi nds the 
point on the ROC curve where the sum of the ratio of correct presence records and the ratio of correct absence 
records is maximized. Both of these threshold selection methods are appropriate if the costs of false positive and 
false negative predictions are weighted equally. However, it is important to note that these sensitivity/ specific
ity threshold selection methods are not without biases, and need to be used with caution (Manel et al. 2001). 
Caution is particularly needed when dealing with rare species because their suitable habitat is almost always 
over predicted (Manel et al. 2001; Elith and Graham 2009). However, habitat over-prediction can be mitigated 
by using datasets with unbiased estimates of prevalence or model outputs that describe the probability of occur
rence (Polansky et al. 2000; Loiselle et al. 2003). Both of these solutions require samples that are systematically 
acquired, and not haphazardly acquired (data used in this study were closer to haphazard). Options for future, 
systematic sample designs are discussed in Section 4.3.1. 



 
 

 
 

 

 

 

 

 

 

     

4.3. DATA AND INFORMATIONAL GAPS 
At mesophotic depths, more than 800 km of seafloor imagery have been collected across the U.S. Pacifi c Islands 
Region, documenting the presence of mesophotic reefs in approximately 50 islands, atolls and banks. However, 
compared to the Caribbean, MCEs in the Pacific still remain relatively unexplored and their distribution largely 
unknown. While these models help to fill some knowledge gaps about the distribution of MCEs in the Au‘au 
Channel Region, several data and informational gaps still exist and need to be addressed in the future. Data 
gaps refer to a lack of spatial data that is needed to make informed decisions. Informational gaps are often the 
result of data gaps, and refer to a lack of understanding of how the different physical and biological components 
of the system work and fit together. Despite being one of the most well studied regions in the MHI, the Au‘au 
Channel Region still has both data and informational gaps that occur across several different disciplines and 
at several different spatial scales. These knowledge gaps are not unique to the Au‘au Channel, as similar gaps 
exist across the MHI as a whole. Many of these gaps remain because of the logistical challenges of accessing, 
measuring and performing experiments at depth (Kahng et al. 2010). 

4.3.1. Data Gaps 
In terms of data gaps, large, shallow-water ar
eas close to the shorelines of Maui, Kahoolawe 
and Lanai as well as across the MHI have not 
yet been mapped at fine (<5 m) spatial resolu
tion. LiDAR collected by the U.S. Army Corps 
of Engineers in 1999 and 2000 filled in much of 
these near-shore areas, but several data gaps 
still exist in key locations. Baseline informa
tion, like high resolution bathymetry, is essential 
for expanding the geographic scope of spatial 
models (like the one presented here) because 
it can be used to describe the structure of the 
seafloor as well as be used as a proxy for other 
environmental variables including PAR. More 
importantly, this type of information is the cor
nerstone of developing informational products 
to support the process of ecosystem based 
management. In the future, efforts should con
tinue to integrate new high resolution depth and 
backscatter surfaces (as SOEST, PIFSC and 
USGS have been doing), but also to acquire 
new data to fill in critical near-shore data gaps 
and further develop our understanding of eco
logically important locations. 

In addition to gaps in environmental information, large gaps also exist in our knowledge about the spatial dis
tribution of mesophotic corals in the MHI as a whole. The data used in this project were collected haphazardly. 
However, future efforts should focus on systematically sampling depths between 30 and 150 m both inside and 
outside the existing HIHWNMS boundaries around each of the MHI. Systematic sampling (such as equal random 
stratification) provides several advantages over haphazard approaches (Hirzel and Guisan 2002) and would help 
improve future habitat suitability modeling efforts. One advantage is that it would allow future MaxEnt predictions 
to be properly calibrated. Calibration would allow the MaxEnt predictive output values to be converted to prob
abilities of occurrence (i.e., how likely a species is present), and would standardize them so that different MaxEnt 
models are directly and quantitatively compared. A second advantage of systematic sampling is that it would 
allow the Sanctuary to explore using presence-absence modeling techniques in addition to or in lieu of MaxEnt. 
These techniques would give the Sanctuary the added capability of predicting the abundance of mesophotic cor
als (in addition to their presence/absence). 

Image 7. Divers slowly ascending from the bottom wait at their 30 foot 
decompression stop after collecting data about mesophotic corals. The 
regulators hanging down provide surface-supplied oxygen from a dive boat 
above that the dives will breath during their longest decompression stop at 
a depth of 20 ft. Photo Credit: R. Boland. 
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4.3.2. Informational Gaps 
Relatively little is known about the suite of fac
tors that influence mesophotic community ecol
ogy and structure (Kahng et al. 2010). Despite 
this informational gap, MCEs have long been 
considered a default refuge for shallow-water 
coral reef ecosystems because it is assumed 
that they are more protected from physical dis
turbance and more isolated from anthropogenic 
impacts like fishing and land based sources of 
pollution. Even if they are more protected from 
disturbance, it is likely that MCEs are inhabited 
by depth-generalist coral species, which (in the 
Caribbean) constitute approximately only 25% 
of the total coral biodiversity (Bongaerts et al. 
2010). This gap leaves a large number of shal
low-water coral species at risk. It also clearly 
indicates that many questions remain unan
swered about the ecology of MCEs and their 
level of connectivity with shallow-water reefs. 
These questions include, but are not limited to: 

1. What environmental conditions influence and/or limit MCE structure and resilience?
2. How do biological and ecological forces, like predation, competition and recruitment, shape mesophotic

ecosystems?
3. How are MCEs different from shallow-water coral reef ecosystems?
4. To what extent can or do MCEs serve as refuges for shallow-water species, including both fish and corals?
5. How susceptible are MCEs to anthropogenic impacts, including climate change?
6. What role should MCEs play in planning for resilient reefs in the future?

To begin to answer these questions, additional studies are needed describing the levels of connectivity and the 
source/sink recruitment dynamics between shallow and deep populations over time. These studies may also 
concurrently provide insight into the taxonomy, life history, population dynamics and environmental limits of me
sophotic corals, which enable them to survive and thrive at extreme depths. Understanding the environmental 
limits of MCEs will be particularly critical in the future, since these limits will help us predict how coral reef com
munities will respond to both local environmental and global climate changes. 

4.4. CONCLUSION 
Although significant research questions and data gaps remain, the MaxEnt predictive models created here are 
accurate and can be used for a variety of management, scientific, and education applications. These models 
quantitatively showed that mesophotic coral distributions are concentrated between Hanakaoo and Papawai 
Points in the Au’au Channel because this area has some of the most stable, local environmental conditions in 
the study region, hosting warmer, clearer and calmer water conditions almost year round. Although mesophotic 
corals are also responding to other environmental and ecological cues beyond the ones discussed here, these 
mathematic and spatial patterns suggest that other areas in the MHI with local environmental conditions similar 
to those between Hanakaoo and Papawai Points may also host higher concentrations of hard mesophotic cor
als. Future research efforts should focus on identifying and systematically sampling these areas both inside and 
outside the Sanctuary boundaries. Understanding the broader geographic distributions of mesophotic corals will 
help the HIHWNMS to effectively target ecologically important areas for conservation in support of its ecosystem-
based management plans and goals. 

Image 8. Diver’s eye view of a reef of Leptoseris hawaiiensis corals at a 
depth of 275 feet. Despite the low light conditions evident in the photo the 
coral growth here is luxuriant. Photo Credit: J. Rooney. 
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